Ligando salsas con Ciencia (I)

Entre una salsa rala y otra untuosa se diferencia un plato infame de otro apetecible. Entre una salsa ligada como engrudo y una napante demi-glace se nota la diferencia entre una olla de presidio y un auténtico cocinero de restaurante. Dar la textura apropiada a salsas, cremas y sopas es un capítulo básico de la técnica de cocina: las ligazones.

Encadeno este tema con mi anterior entrada sobre mecánica de fluidos para cocineros pues, como allí se comentaba, el manejo de la viscosidad es elemental cuando se cocina y espesar salsas es esencialmente una cuestión de viscosidad. Ligar una salsa incluye dos conceptos: evitar la separación de fases (“salsa cortada”) y aumentar su viscosidad (“engordar”).

Repaso: viscosidad

En aquel post explicábamos que la viscosidad es la resistencia al flujo o a la deformación que presenta un fluido. Es esa resistencia notada cuando se menea una cuchara dentro de un líquido o cuando se vierte de un recipiente a otro. Por ejemplo, hay una viscosidad creciente entre leche, crema inglesa y crema pastelera.

El objetivo es atrapar el agua

Aquí radica el santo secreto para espesar una salsa: reducir la movilidad del agua. El modo de hacerlo ha originado las numerosas técnicas y ligazones disponibles en una cocina, sea añadiendo macromoléculas que fijen el agua, emulsionando el líquido o evaporando parte del agua.

Las moléculas de agua tienen gran facilidad de flujo y, por tanto, baja viscosidad, pero si se adhieren y ordenan alrededor de otras moléculas largas/ramificadas pierden capacidad de movimiento. Esta capa de solvatación se debe a la formación de puentes de hidrógeno y a las interacciones electrostáticas.

También influye en la viscosidad la fricción que haya entre las propias cadenas de estas grandes moléculas y cuánto tiendan a “enredarse”, es decir, su poder gelificante. Aquí nos asomamos a las transformaciones sol-gel en el fascinante mundo de los coloides.

aguasolvatacion

Las moléculas hidrofílicas fijan a su alrededor una capa de agua a través de puentes de hidrógeno e interacciones iónicas. Ese agua solvatada tiene menor capacidad de fluir y, por tanto, mayor viscosidad. En cambio el agua libre fluye libremente.

De sol a gel y de gel a sol

Una clara de huevo contiene proteínas dispersas en agua, pero al cocinarse las proteínas gelifican en forma de una red sólida que contiene gotas de agua atrapadas. Tal inversión de las fases (proteínas solubles → red proteica, agua fluente → agua dispersa y fijada en la red) es un ejemplo de transformaciones sol-gel.

Un sol es un coloide donde partículas sólidas flotan en una fase líquida, mientras un gel es un coloide donde un sólido contiene gotas de líquido dispersas. Muchos sistemas pueden pasar de sol a gel y viceversa según las condiciones de temperatura y agitación. Así un buen consomé se gelatiniza al guardarlo en nevera y vuelve a licuarse al calentarlo. Manejar el equilibrio sol-gel permite ajustar la textura de una crema/salsa para no terminar con una bechamel arrojadiza o unas natillas de goma.

sol-gel

Un sol está constituido por partículas sólidas flotando en líquido, mientras un gel es una red sólida que contiene agua. Algunas sustancias pueden pasar de sol a gel de acuerdo a las condiciones de temperatura, concentración o pH.

El gradiente de consistencias entre sol y gel depende de la concentración del texturizante y de la temperatura, pero también de las propiedades intrínsecas del compuesto empleado, ya que algunos actúan mejor como espesantes y otros como gelificantes.

Cosas que sirven para espesar

Casi todos los espesantes son moléculas poliméricas, largas y ramificadas capaces de fijar una buena capa de agua en su entorno y de tener fricción entre sí mismas. Por lo común son carbohidratos (almidón, pectinas, gomas) o proteínas (colágeno, albúmina, huevo, sangre). Un caso aparte es la ligazón con grasas (nata, yema, mantequilla).

Los espesantes tipo proteína o carbohidrato suelen someterse a dos fases para obtener su efecto: la primera de extracción/dispersión y la segunda de gelificación.

  • Extracción/dispersión: el colágeno debe extraerse de los tejidos animales durante la cocción y el almidón del arroz o la patata igualmente se extrae hacia el líquido donde hierven. El almidón de harina o maicena y la gelatina de hojas debe primero dispersarse antes de actuar en el medio líquido.
  • Gelificación: el calentamiento produce la formación de redes viscosas de carbohidratos o proteínas desnaturalizadas. Según el grado de gelificación se obtiene un sol más o menos viscoso o un gel más sólido.

Esto es un esquema general, pues hay espesantes que actúan en frío (goma arábiga, goma xantana) y otros cuyo efecto gelificante aparece a medida que baja la temperatura (gelatina, agar).

En el próximo post veremos detalles de cómo funcionan las ligazones mediante polisacáridos, proteínas y grasas, pero veamos un método general para poner a punto una salsa: la reducción.

Evaporación

La reducción es el recurso del cocinero para concentrar un líquido. En ciencia se diría simplemente evaporación (pues reducción es un proceso electroquímico en el que un átomo recibe electrones de otro reactante).

La evaporación progresiva y controlada del agua concentra los solutos y ello se traduce en aumento de sabor, salinidad y viscosidad. La reducción para espesar un líquido funciona si éste contiene sustancias con poder de fijar agua; es decir, si se hierve agua salada nunca se obtendrá un líquido viscoso, solo agua más salada y finalmente solo sal, en cambio si se calienta leche prolongadamente se concentran sus proteínas y gotas de grasa, y se obtiene ese fluido espeso que es la leche evaporada.

La evaporación es una técnica costosa pues consume más tiempo del personal y se obtiene menor volumen del preparado, pero a cambio se concentran sabor y aromas y la textura final no es comparable a la obtenida por espesantes añadidos.

Salsas cortadas

Otro dolor de cabeza cotidiano son las salsas con separación de fases. Son tres las capas que pueden separarse: la grasa, una fase líquida y otra de residuo sólido. El afloramiento de grasa en una salsa se debe en primer lugar a un exceso de fase lipídica, y en segundo término a una insuficiente estabilización de las gotas grasas mediante un agente surfactante.

La separación de líquido y sólidos es común en cremas de verduras y en guisos no del todo óptimos. El sedimento sólido puede deberse a exceso de celulosa insoluble –como cuando se trituran vegetales– o por retrogradación del almidón. El escurrimiento de aguachirri desde una salsa indica que o bien le sobra agua y debe someterse a evaporación, o bien requiere la adición de un agente que atrape el agua.

mermelada_cortada

Esta mermelada deja escapar fluido por alguno de estos motivos: evaporación insuficiente de agua, proporción menor de azúcar, falta de pectina o de acidez para activarla.

El nombre elegante para el escape de agua desde un coloide es sinéresis. Además de ocurrir en cremas/salsas, la sinéresis acontece en algunos geles (como los de agar-agar) y en espumas (como las claras montadas y merengues mal estabilizados). De hecho, esta propiedad permite clarificar caldos mediante gelificación, pues la malla de gel actúa como un microfiltro que retiene partículas y deja gotear el líquido sinerético. Aquí un ejemplo del amigo Enrique de Dorarnosella y otro del gran Orges en La margarita se agita.

Así, amigo cocinero, cuando el jefe de partida te venga a crujir por una crema cortada le puedes responder que no está cortada, sino que ha hecho sinéresis, a ver si te libras del mamporro o te lo da más fuerte.

Lo dicho, en el próximo capítulo seguimos con ejemplos concretos de cómo ligar salsas con ciencia.

Adenda:

Sumo aquí el comentario del profesor Orges con un par de apuntes sobre separación de fases:

  • Otra razón (que no suele darse en la cocina) por la que se puede desestabilizar una emulsión es por un exceso de batido: al hacer gotas de grasa más pequeñas, el volumen de grasa es el mismo, pero la superficie aumenta cada vez más, hasta que no hay emulsionante suficiente.
  • Otros sólidos que pueden aparecer afeando una salsa son agregados de proteínas coaguladas cuando se han sometido a un calentamiento excesivo y prolongado

 

 

Anuncios

4 comentarios en “Ligando salsas con Ciencia (I)

  1. Genial, como siempre.

    Un par de apuntes complementarios:

    .- Otra razón (que no suele darse en la cocina) por la que se puede desestabilizar una emulsión es por un exceso de batido: al hacer gotas de grasa más pequeñas, el volumen de grasa es el mismo, pero la superficie aumenta cada vez más, hasta que no hay emulsionante suficiente.

    .- Otros sólidos que pueden aparecer afeando una salsa son agregados de proteínas coaguladas cuando se han sometido a un calentamiento excesivo y prolongado

    Un abrazo y gracias por las referencias

    Me gusta

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s