«Pídele un doppler», dice el torradillo adjunto al residente, quien lo apunta tal cual en el papel, a lo mejor con una ‘p’ de menos. La ecografía-doppler es una prueba de lo más común actualmente, pero el principio en el que se basa fue formulado hace 175 años en Praga por el físico, matemático y astrónomo Christian Andreas Doppler. La RAE acepta ‘doppler’ con minúscula y cursiva para referirse a la prueba médica, y ‘efecto doppler’ como denominación del fenómeno físico. No sé si cuando el propio nombre pasa a ser el nombre de una cosa y a escribirse con minúscula significa un rotundo éxito profesional o, al contrario, una desmemoria del personaje.

La historia del efecto Doppler comenzó con una aberración óptica y su explicación astronómica, pasó a los pitos de los trenes, después a la radiación electromagnética y a la relatividad especial, de allí se aplicó a la expansión del universo, a los radares, a los sonares, a los satélites y, por último, a los ultrasonidos para que las embarazadas lagrimeen cuando escuchan el corazón de su fetito.

Christian Doppler

Christian Andreas Doppler en foto de 1853. Vía www.christian-doppler.net.

Toda la vida picando piedra

Christian Doppler nació en Salzburgo en 1803. Su casa natal está a cuatro pasos de la de Mozart (números 1 y 8 de la Makartplatz, respectivamente) y, al igual que Mozart, hizo fama en otros lares y poco pisó su ciudad natal tras abandonarla. La mala salud respiratoria que siempre padeció el muchacho le permitió librarse del negocio familiar de picar piedra en cantera-construcción y pudo cultivar su talento para la matemática y la física. Sin embargo, tras acabar sus estudios en Linz y Viena siguió «picando piedra» con contratos temporales, bajas, becas, portamaletines de profesores, etc. Tras cuatro años de oposiciones fallidas y precariedad laboral (nada nuevo bajo el sol) estuvo tan harto que decidió irse a hacer las Américas, pero en último momento encontró una plaza de profesor preuniversitario en Praga y allá se fue a vivir durante más de una década.

Tanto en la preparatoria como en la Universidad de Praga Doppler picó piedra como nadie, asumió una enorme carga lectiva, con muchos alumnos, muchas clases y muchas evaluaciones. Tuvo fama de coco, de profesor durísimo. Ese mantenido esfuerzo vocal en sus conferencias no le ayudó en su salud, considerando que padecía tuberculosis laríngea.

En 1848 se cambió al Instituto Politécnico de Viena y en 1850 fue nombrado director del recién inaugurado Instituto de Física de la Universidad de Viena. Allí tuvo entre sus discípulos al padre Gregor Mendel, famoso horticultor de leguminosas. La tuberculosis siguió consumiéndolo y en 1853 se trasladó a Venecia, como tantos tuberculosos de su época, en busca de un clima beneficioso para su mal. Doppler murió allí al cabo de unos meses.

Publicó medio centenar de trabajos científicos, de los que casi ninguno tuvo relevancia, bien por ser ideas de bombero o por quedarse atrás respecto a contribuciones de sus contemporáneos. Únicamente la descripción del efecto Doppler le ha valido merecida fama.

Fiiiiiiiiiiuuuuuuuu… el efecto Doppler

El origen de la observación, el planteamiento del fenómeno y su aplicación para explicar lo que Doppler pretendía no fueron correctos del todo, pero la idea central resultó ser cierta y trascendente. Doppler buscaba una explicación para la aberración de la luz estelar descrita por Bradley en 1725, es decir, un desplazamiento aparente de la posición de una estrella debido a la velocidad de traslación de la órbita terrestre. El profesor Doppler filosofó acerca del efecto que podía tener un desplazamiento a alta velocidad sobre las ondas emitidas por las estrellas: argumentó que si un cuerpo celeste se desplaza a gran velocidad distorsiona las ondas de la luz que emite, de modo que por una parte estarán más apretadas —tendiendo al azul— y por otra más holgadas —tendiendo al rojo—. Así lo publicó en 1842 en su obra Ueber das farbige Licht der Doppelsterne und einiger anderer Gestirne des Himmels (Sobre el color de la luz de las estrellas binarias y otros astros celestes).

Doppler publicación

Portada de la breve obra original de Christian Doppler donde enuncia su efecto epónimo. Vía Google Books.

La verdad es que ello no explicaba la aberración de Bradley y la tecnología de la época no estaba para observar corrimientos al rojo o al azul en los cuerpos celestes. Sin embargo, el principio propuesto por Doppler era aplicable a cualquier variedad de onda, sea electromagnética, de sonido o las ondas mecánicas producidas en un estanque tranquilo por un objeto que se desplaza en su superficie.

Tres años después de la publicación el efecto fue demostrado experimentalmente para las ondas sonoras por el holandés Buys Ballot. Puso a músicos a emitir una nota concreta desde un tren en marcha y a otros músicos a replicar la nota que oían desde tierra según pasaba el tren. Así se observó un aumento de la frecuencia aparente del sonido cuando el tren se acercaba y una reducción de frecuencia cuando se alejaba.

Doppler Buys-Ballot

Buys Ballot intentó demostrar que la idea de Doppler era errónea, pero acabó confirmándola. Aunque se nos antoja un experimento sencillo y evidente, a Buys Ballot le costó lo suyo acabarlo con éxito. El músico del tren no aprecia cambios en su nota, mientras el que oye en tierra sí detecta un cambio aparente del tono por el cambio de frecuencia inducido por el desplazamiento.

Actualmente el efecto Doppler es fácil de observar a pie de calle con cualquier coche que pasa, cualquier sirena de ambulancia o quinqui con música a toda castaña en su vehículo tuneado. Pero antes de la revolución industrial no había objetos que se desplazaran a gran velocidad y que pudieran distorsionar el sonido, excepto proyectiles de cañón —si bien durante un bombardeo nadie se pone a pensar en frecuencias de onda—.

Musicis digressio.- Los compositores clásicos no han usado mucho la imitación del efecto Doppler en sus obras. Lo más parecido que me viene a la mente es precisamente en simulación de bombas y pirotecnia bélica. El ejemplo más siniestro está en la Octava Sinfonía de Shostakovich. Las «sinfonías de guerra» de Shostakovich son la auténtica banda sonora de la Segunda Guerra Mundial. La 8.ª sinfonía data de 1943, en lo más álgido del conflicto. Su tercer movimiento es una hipotiposis bélica de seis minutos de música tensísima, conducidos por un tema en ostinato de las cuerdas sobre el que los bajos y la percusión dan golpes como de detonación y, cada tanto, se repite una figura con una larga nota aguda seguida por un salto con ligadura a su octava inferior, cosa que recuerda el paso doppleriano de un obús.

shostakovich_octava sinfonía

Fragmento del tercer movimiento de la octava sinfonía Op. 65 de Dimitri Shostakovich, donde se observa la figura musical que recuerda al efecto Doppler de un proyectil. Los violines hacen una nota larga y aguda in crescendo, que súbitamente baja en glissando. Las violas tocan el tema en ostinato que vertebra la pieza.

El segundo ejemplo está traído por los pelos, la verdad: está en el Concierto Emperador de Beethoven. Este 5.º concierto para piano también tiene un trasfondo bélico pues se compuso durante el ataque de Napoleón a Viena. Hay un breve momento de diez compases en el desarrollo del primer movimiento donde el pianista toca progresiones ascendentes del tema principal (fortspinnung) mientras la mano izquierda acompaña con escalas descendentes cromáticas que acaban con la pulsación del compás acompañadas de acentos de la orquesta. El efecto es una reminiscencia de batalla con proyectiles cayendo —no digo que ésta fuera la intención del compositor—, como aquellos cañonazos franceses que tanto aterraron a Beethoven, escondido en el sótano de casa de su hermano y cubriendo su cabeza con cojines para mitigar el malestar que las explosiones tenían que causar a sus perjudicados laberintos. Ni este enorme concierto ni ninguna otra obra de su período «heroico» puede encasillarse como música marcial y de soldaditos —bueno, la excepción es ese truñico llamado La batalla de Vitoria, Op. 91—, aunque algunos analistas se queden en esa observación superficial. La obra de Beethoven es infinitamente trascendente.

beethoven emperador

Pequeño segmento del quinto concierto para piano Op. 73 de Beethoven. La mano derecha del pianista toca un fortspinnung del tema principal, con aire batallador, mientras la izquierda hace repetidos descensos cromáticos. Estas figuras descendentes también las usó Beethoven en su antes mencionado Op. 91.

Doppler, relatividad y big bang

El efecto Doppler es un postulado relativístico, ya que depende del movimiento relativo del objeto emisor respecto a un observador referencial. El músico que va en el tren no nota ninguna variación en la nota que está emitiendo, mientras que el observador que escucha inmóvil sí nota la deformación sonora inducida por el desplazamiento de la fuente emisora.

De hecho Einstein tiró del efecto Doppler-Fizeau como parte de su teoría de la relatividad especial de 1905 (Hippolyte Fizeau describió en 1848 el mismo fenómeno que Christian Doppler aplicado a las ondas electromagnéticas). Según ello un objeto que se acerca al observador a una velocidad cercana a la luz presentaría un corrimiento al azul en la luz que emite, mientras que si se aleja se apreciaría un corrimiento al rojo.

Los astrofísicos observaron mediante espectroscopia que las galaxias muestran un corrimiento al rojo, es decir, se están alejando unas de otras. Ello condujo al padre Lemaître y a Hubble (en 1927 y 1929, respectivamente) a formular la teoría de la expansión del universo. Si se está expandiendo es porque en el pasado la materia cósmica estuvo concentrada en un punto, y esa es la base de la teoría del big bang y del cálculo de la edad del Cosmos. Casi na.

Doppler

Christian Doppler (1803-1853), aquí con el disfraz de “efecto Doppler” de Sheldon Cooper.

El efecto Doppler es uno de los principios del radar. También se considera en telecomunicaciones para corregir señales de satélites; incluso una persona que usa su móvil desde un vehículo en marcha presenta una deformación de las ondas de radiofrecuencia que puede afectar a su rendimiento.

El doppler para detectar flujos

Hablo de flujo sanguíneo, por supuesto, no lo que los ‘gines’ llaman flujo. La tecnología del eco-doppler suma los principios del efecto Doppler y de la ecolocalización; este último es la base de la ecografía convencional y del sonar que usan los barcos, los cetáceos y los murciélagos.

satomura_doppler

Shigeo Satomura y su publicación en japonés sobre eco-doppler en la Revista de la Sociedad Acústica Japonesa de 1959. Satomura murió al año siguiente por una hemorragia subaracnoidea.

El grupo del físico Shigeo Satomura (1919-1960), en Osaka, fue el primero en pensar cómo aplicarlo en el estudio no invasivo del sistema cardiovascular durante los años 50 del s.XX. En la siguiente década se sumaron más investigadores en otros países, entre quienes destaca Robert F. Rushmer (1914-2001), de Seattle. En los años 80 se desarrolló el eco-doppler bidimensional.

rushmer_doppler

Foto de Robert Rushmer, pionero del doppler clínico (vía U.S. National Library of Medicine) y figura de su artículo junto con Dean Franklin en la revista Science del 25 de agosto de 1961.

Los equipos de doppler médico se fueron sofisticando y redujeron su tamaño. Ahora es de uso común en cualquier centro de ecografía, cirugía vascular, hemodinamia u obstetricia. Hasta se venden dopplers de andar por casa por poco más de 20 € para que las embarazadas escuchen el corazón de sus bebés cuando quieran.

El doppler permite localizar vasos sanguíneos al detectar su flujo, mide la velocidad del flujo, su dirección, la presencia de turbulencias y el ritmo de las pulsaciones. En los modos dúplex y tríplex suma información funcional a la información anatómica que da la ecografía modo B. Resulta básico en la monitorización fetal, en la enfermedad vascular periférica, en el estudio de la enfermedad carotídea, determina inversiones de flujo en venas arterializadas por fístulas o malformaciones arteriovenosas, y no se diga su utilidad en ecocardiografía.

doppler umbilical

Imagen de ecografía doppler de la vena y las arterias umbilicales (www.kpiultrasound.com).

De nuevo vemos aquí dos características de la buena Ciencia: primero, la universalidad de sus principios permite aplicarlos en áreas totalmente alejadas de donde se realizó la investigación original; así, una idea originada en lejana astrofísica ha terminado aplicándose en la vida común, sea para ponerte una multa por radar o para diagnosticarte la cardiopatía que afloró tras recibir la multa. Segundo, el trabajo aditivo y colaborativo de los científicos, pues la ecografía-doppler no existiría sin otro montón de aportes, desde la propuesta de Spallanzani sobre la existencia del ultrasonido hasta el descubrimiento del efecto piezoeléctrico hecho por los Curie. La pseudociencia y la charlatanería no logran recorrido, hacen daño en donde se inventan (por lástima, demasiado en salud) y no pueden progresar con nuevas evidencias.

«Ceterum censeo Podemus esse delenda»

bannerpresentaciones

Anuncios

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s