Médicos en la Luna

Los accidentes geográficos de los planetas y satélites del sistema solar reciben nombres identificativos bendecidos por las Unión Astronómica Internacional (IAU). Al igual que en el callejero de las ciudades se suele honrar la memoria de personalidades señaladas, también en los bautizos topográficos espaciales se aprovecha para reconocer a científicos de toda índole, desde la antigüedad clásica hasta el siglo XX.

El rasgo más llamativo de la superficie lunar son sus más de 5.000 cráteres, de los cuales poco más de 1.600 han recibido un nombre propio (aquí se puede consultar el listado de la IAU). En su mayoría son, obviamente, astrónomos, seguidos por matemáticos, físicos y personajes relacionados con la carrera espacial, también muchos químicos, unos buenos puñados de geólogos, geógrafos, ingenieros, naturalistas y otras diversas ramas científicas.

caras_de_la_luna

Cara visible y cara oculta de la Luna. Foto vía www.urania.be.

En cuanto a medicina, fisiología y biología hay poco más de medio centenar, más un par de decenas de personajes que estudiaron medicina pero brillaron en otros aspectos del saber. Vamos a repasar brevemente el listado de personajes históricos relacionados con nuestro oficio y honrados con un cráter en propiedad.

A

Acosta, Cristóbal (1515-1594), médico portugués que ejerció en España y en las colonias portuguesas de la India. Destacó en botánica y farmacología, área en la que publicó su Tractado de las drogas y medicinas de las Indias orientales (1578).

Avery, Oswald (1877-1955), médico canadiense pionero de la biología molecular; descubrió el papel de los ácidos nucleicos en la herencia genética. Es famoso el experimento de Avery, McLeod y McCarty con colonias de neumococos rugosas y lisas y cómo unas se podían transformar en otras por efecto de la transferencia genética.

Averroes (1126-1198), sabio cordobés que tocó filosofía, matemáticas y medicina, entre otros menesteres.

Avicena (980-1037), predecesor del anterior, fue médico y filósofo persa. Escribió su Canon o Libro de las leyes médicas en cinco volúmenes, obra central de la medicina medieval.

Avogadro, Amedeo (1776-1856), conde italiano dedicado a química y física. No tuvo relación con la medicina, pero lo incluyo aquí porque el número de Avogadro es la demostración más básica de que la homeopatía es una engañifa sin sentido.

B

Banting, Frederick (1891-1941), médico canadiense descubridor de la insulina, junto con Charles Best, además de aislarla e iniciar la terapéutica de la diabetes. Recibió el Nobel en 1923. Además del cráter también tiene un asteroide epónimo.

Benedict, Francis (1870-1957), fisiólogo y nutricionista norteamericano, quien trabajó en calorimetría metabólica y en los conceptos de metabolismo basal y tasa metabólica.

Bilharz, Theodor (1825-1862), médico y parasitólogo alemán descubridor del trematodo Schistosoma, razón por la que la esquistosomiasis también se llama bilharzia (ver post).

Bronk, Detlev (1897-1975), médico e ingeniero americano pionero de la biofísica. Trabajó en teoría de la educación científica y dirigió el Instituto Rockefeller, la National Academy of Sciences y la Universidad Johns Hopkins.

Bunsen, Robert (1811–1899) químico alemán famoso en medicina por el mechero Bunsen, cacharro imprescindible en todo laboratorio microbiológico. También hay un asteroide Bunsen.

C

440px-cajal-restored

Santiago Ramón y Cajal. Foto vía wikipedia.

Cajal, Santiago Ramón y (1852-1934), grande entre los grandes, sobre este médico maño, papá de las neuronas, de la teoría neuronal y de la neurobiología moderna, siempre será poco lo que se diga en su honor. Nobel en 1906 (el otro Nobel médico español, Severo Ochoa, de momento no tiene cráter). Además de cráter tiene asteroide, el Ramonycajal, así, todo junto.

Carrel, Alexis (1873-1944), médico francés precursor de la cirugía vascular y de trasplantes, Nobel en 1912. Aquí un post sobre stents vasculares donde aparece.

Caventou, Joseph (1795–1877), químico y farmacéutico francés que aisló la clorofila, la quinina, la cafeína, la estricnina y la ipecacuana, entre otros alcaloides.

Cori, Gerty (1896-1957), bioquímica checo-estadounidense, Nobel en 1947, investigadora del metabolismo de los carbohidratos y conocida por el ciclo de Cori (ciclo glucógeno-glucosa-lactato).

Crile, George Washington (1864-1943), cirujano americano archifamoso por las pinzas hemostáticas que llevan su nombre. También hizo contribuciones en las técnicas anestésicas, la fisiología circulatoria y diversas técnicas quirúrgicas.

D

Dale, Henry (1875-1968), médico y fisiólogo inglés, Nobel en 1936 por sus estudios sobre transmisión neuronal.

Dalton, John (1766-1844), químico inglés a quien debemos la descripción del daltonismo, que él mismo sufría. Es más conocido por su contribución a la teoría atómica.

Doppler, Christian (1803-1853), físico austríaco inmortalizado por describir la deformación relativa de las ondas por el desplazamiento de su fuente emisora, o efecto Doppler, empleado cotidianamente en la ecografía doppler. Aquí un post dedicado a él.

E

Ehrlich, Paul (1854-1915), médico alemán dedicado a la microbiología y a la entonces naciente inmunología, Nobel en 1908. Desarrolló el concepto de especificidad de la respuesta inmunitaria y abrió camino en la terapéutica antiinfecciosa.

Eijkman, Christiaan (1858-1930), médico y fisiólogo holandés, Nobel en 1929 por el descubrimiento de la tiamina y su relación con el beriberi. Tiene asteroide epónimo.

Einthoven, Willem (1860-1927), este médico holandés fue ni más ni menos el inventor del electrocardiógrafo, casi nada. Nobel en 1924.

Eppinger, Hans (1879-1946), médico austríaco a quien se le retiró el nombre de este cráter y otros honores terrenales por haber hecho experimentos en el campo de concentración de Dachau.

F

Fernelius (1497-1558), Jean Fernel, médico francés reformador de la antigua medicina galénica. Fue quien introdujo el término fisiología para referirse al estudio de las funciones de los seres vivos. Sin embargo, el auténtico padre de la moderna fisiología, Albrecht von Haller, no ha sido agasajado con ningún cráter ni otro reconocimiento celeste.

Fibiger, Johannes (1867-1928), patólogo danés discípulo de Koch y von Behring. Realizó estudios sobre el origen del cáncer y su relación con agentes externos y condiciones inflamatorias (aunque varias de sus teorías se han desestimado posteriormente). Nobel en 1926.

Finsen, Niels (1860-1904), otro médico danés, Nobel en 1903 por sus estudios sobre la luz ultravioleta, tanto en su acción germicida como en el tratamiento de afecciones dermatológicas. El asteroide Eros tiene un accidente topográfico llamado Dorsum Finsen en su honor.

Fleming, Alexander (1881-1955), no hace falta decir mucho sobre este famosísimo médico microbiólogo escocés, descubridor de la penicilina y de la lisozima. Nobel en 1945.

Florey, Howard (1898-1968), farmacólogo australiano quien compartió el Nobel con Fleming por la fabricación y aplicación clínica de la penicilina. Tiene un asteroide.

Fracastorius (1476-1553), Girolamo Fracastoro, médico veronés quien describió la sífilis en verso (literalmente) y teorizó sobre los mecanismos de transmisión de enfermedades contagiosas. También hizo pinitos en astronomía.

Freud, Sigmund (1856-1939), psiquiatra austríaco que no necesita presentación debido a la revolución que significó su sistema de estudio de la psiquis, aunque la mayor parte de su teoría —al menos en lo que a terapéutica se refiere— ya ha sido ampliamente superada.

G

Galeno, Claudio (129-216), médico grecorromano, segundo padre de la medicina, tras Hipócrates. Hizo numerosas contribuciones a la medicina, pero a la vez sentó un corpus de anatomía, fisiología y patología mayormente equivocado (por las lógicas limitaciones de su época) que lastró el avance científico durante la edad media debido al dogmatismo de sus seguidores.

Gemma Frisius, Regnier (1508-1555), este holandés pertenece al grupo de los que comenzaron estudiando medicina y terminó pasando a matemáticas, astronomía y cartografía, donde hizo todas sus contribuciones reseñables. Sin embargo, ejerció de médico y profesor de medicina.

Gilbert, William (1544-1603), médico inglés quien poco dio a la medicina, pero sí muchísimo y muy relevante a la electricidad y al magnetismo, incluyendo la introducción del término ‘electricidad’, la invención del electroscopio, estudios sobre electrostática, conductividad, termodinámica y descubrir el campo magnético terrestre.

Goclenio, Rodolfo (1572-1621), médico, astrónomo y filósofo alemán. Promocionó la magnetoterapia y varias curas milagrosas con ungüentos esotéricos de poco recorrido.

Golgi, Camillo (1843-1926), uno de los grandes de la historia médica, compañero de Cajal en desenredar la histología del sistema nervioso y con quien compartió el Nobel de 1906. Descubrió el aparato de Golgi, las células de Golgi cerebelosas y el órgano tendinoso de Golgi.

gullstrand

Allvar Gullstrand, oftalmólogo sueco, Nobel en 1911. Vía www.uu.se.

Gullstrand, Allvar (1862-1930), a este oftalmólogo sueco, ganador del Nobel en 1911, no le prodigamos suficiente reconocimiento dentro de nuestro gremio oftalmológico, a pesar de haber inventado la lámpara de hendidura, haber perfeccionado el oftalmoscopio, haber estudiado al detalle la refracción ocular y la acomodación, e introducir numerosos procedimientos quirúrgicos.

H

Haldane, John Burdon (1892-1964), biólogo inglés que trabajó sobre teoría de la evolución, genética poblacional y las primeras ideas actuales sobre el origen de la vida.

Harvey, William (1578-1657), médico inglés que describió correctamente el mecanismo de la circulación sanguínea. A Miguel Servet, sin embargo, no le han otorgado titularidad de cráter alguno.

Helmholtz, Hermann von (1821-1894), médico alemán que hizo tantas contribuciones a la medicina como a la física. Tiene el inmenso honor de haber inventado el oftalmoscopio y haber hecho el primer fondo de ojo. Además de un cráter lunar tiene otro en Marte.

Hipócrates (460-370 a.C.), sobra decir que es el primer referente todos los médicos y que su escuela de Cos sistematizó los conocimientos de su época como base para el desarrollo científico posterior.

Houssay, Bernardo (1887-1971), médico, farmacéutico y fisiólogo argentino, compartió el Nobel de 1947 con la antes mencionada G. Cori. Estudió las hormonas hipofisarias, suprarrenales y pancreáticas. También cuenta con un asteroide.

J

Jenner, Edward (1749-1823), médico inglés creador de la vacunación, con todo lo ello ha representado para la Humanidad (a pesar de la corriente de catetos antivacunas que en mala hora existen). No podía faltar un asteroide con su nombre.

K

Karrer, Paul (1889-1971), bioquímico ruso-suizo que investigó sobre carotenoides, flavinas y tocoferoles, es decir, fue un importante vitaminólogo. Nobel en 1937.

Kekulé, August (1829-1896), es el padre de la química orgánica y, por tanto, abuelo de la bioquímica. Lo incluyo aquí, también, por prestar su nombre a la Editorial Científica Kekulé, con la que colaboro estrechamente. Cráter y asteroide merecidos.

Koch, Robert (1843-1910), médico microbiólogo alemán, descubridor del bacilo de la tuberculosis y, junto con Pasteur, impulsor de la teoría microbiana y de los modernos conceptos de transmisión de enfermedades infectocontagiosas. Nobel en 1905. Y un asteroide, por supuesto.

Kocher, Emil Theodor (1841-1917), famoso cirujano suizo, creador de diverso material quirúrgico, entre el que destacan sus pinzas hemostáticas (más robustas que la de Crile y con dientes). Sus estudios sobre función y patología tiroidea le valieron el Nobel en 1909. Also asteroid.

banner_presentaciones

L

Landsteiner, Karl (1868-1943), médico austríaco cuyo descubrimiento de los grupos sanguíneos le valió el olimpo y el Nobel de 1930.

Leeuwenhoek, Anton van (1632-1723), inventar el microscopio y descubrir un mundo invisible no es para que te den un cráter lunar y un asteroide, como es el caso, sino un sistema planetario entero o una galaxia.

Liceti, Fortunio (1577-1657), médico y filósofo italiano, amigo de Galileo, con quien dio pasitos en astronomía pero defendiendo el geocentrismo.

Lilio (1510-1576), Luigi Giglio, al igual que el anterior fue filósofo, astrónomo y médico italiano. Participó en el borrador de lo acabaría siendo nuestro actual calendario gragoriano.

Lovelace, William (1907-1965), médico americano impulsor de la medicina aeroespacial.

M

Mechnikov, Ilia (1845-1916), microbiólogo e inmunólogo ruso adicto al yogur, quien estudió la inmunidad innata y la fagocitosis. Compartió el Nobel con Paul Ehrlich.

Mendel, Gregor (1822-1884), cura austríaco que describió las leyes de la herencia y, por ello, se le considera padre de la genética. Además de cráter lunar, se le ha dado su nombre a otro en Marte y a un asteroide.

Milchius (1501-1559), Jacob Milich, este alemán forma parte del grupo de médicos renacentistas que hacían de todo: matemático, filósofo y astrónomo, en este caso.

O

Olbers, Heinrich (1758-1840), otro médico alemán dedicado a la astronomía, donde hizo numerosos descubrimientos relacionados con asteroides y cometas. Por ello, además del cráter hay un par de asteroides y un cometa que comparten su eponimia.

P

Paracelso (1493-1541), alquimista, médico y esotérico suizo, que contribuyó al desarrollo de la toxicología, pero cuya afición a los horóscopos y al misticismo lastra su contribución científica.

Parrot, Friedrich (1792-1841), médico y botánico alemán, quien contribuyó con la taxonomía vegetal.

Pasteur, Louis (1822-1895), este portento francés no era médico sino químico, pero contribuyó a las ciencias de la salud como nadie a través de sus aportes en microbiología, inmunología, inmunoterapia y farmacología. Además de la Luna, tiene su nombre en un asteroide y un cráter marciano.

Punkinje, Jan Evangelista (1787-1869), polifacético médico checo, quien da nombre a las fibras de Purkinje cardíacas, a las células de Purkinje del cerebelo, las imágenes y la desviación de Purkinje (fenómenos de fisiología ocular), a un cráter lunar y un asteroide. Investigó la toxicología de múltiples compuestos con un peligroso método kamikaze.

R

Röntgen, Wilhelm (1845-1923), físico alemán descubridor de los rayos X, ganador del Nobel de física de 1901 y santo patrón de los radiólogos. También asteroide.

S

Sasceride, Gellio (1562-1612), médico danés dedicado a la astronomía, discípulo de Tycho Brahe y que casi fue su yerno.

Sherrington, Charles (1857-1952), neurólogo y fisiólogo inglés, laureado con el Nobel de 1932 por sus investigaciones sobre el sistema nervioso, en especial por la función de las áreas de la corteza cerebral.

Sömmerring, Samuel von (1755-1830), médico anatomista polaco-alemán con varios epónimos en la lista anatómica (poco prodigados). Detalló la organización de los pares de nervios craneales y describió, ni más ni menos, la mácula lútea retiniana. Dio palos en paleontología y astronomía, diseño un tipo de telescopio y un telégrafo.

Spallanzani, Lazzaro (1729-1799), biólogo, matemático y cura italiano, famoso por sus experimentos para desmentir la generación espontánea. También estudió la fecundación, la fisiología respiratoria y el sonar de los murciélagos.

Stenon, Nicolás (1638-1686), pues sí, es el del conducto de Stenon de la glándula parótida, pero este anatomista, médico, geólogo y cura danés también descubrió los óvulos en los ovarios, las venas vorticosas del ojo, estudió fósiles y, a pesar de ser hijo de un pastor protestante, se convirtió al catolicismo y terminó obispo. Además del cráter lunar y otro marciano, fue beatificado por la iglesia en 1988.

T

Toscanelli, Paolo dal Pozzo (1397-1482), estudió medicina en Padua, pero se dedicó a las matemáticas, astronomía y cartografía. Fue el responsable del mapa erróneo con una ruta hacia las Indias que cayó en manos de Colon y lo condujo a sus viajes. Asteroide a su nombre.

Theiler, Max (1899-1972), virólogo sudafricano galardonado con el Nobel en 1951 por crear la vacuna contra la fiebre amarilla.

Tiselius, Arne (1902-1971), bioquímico sueco que investigó la composición química del plasma sanguíneo y desarrolló sucedáneos sintéticos. Nobel de química en 1948.

Tyndall, John (1820-1893), físico irlandés famoso por el efecto Tyndall o dispersión de la luz por partículas en suspensión. Estudió coloides, radiación térmica (que dio pie al concepto del efecto invernadero y al capnógrafo), desarrolló una técnica de esterilización microbiológica (tindalización) y de control ambiental microbiano por eliminación de partículas aéreas en suspensión; además fue el padre de la fibra óptica. Por ello tiene cráter lunar, otro marciano y un asteroide.

V

rudolf-virchow-9519219-1-402

Rudolf Virchow. Foto de biography.com.

Virchow, Rudolf (1821-1902), este médico alemán es el papichulo de la patología moderna. A él se debe la comprensión actual de los procesos patológicos, exprimió al máximo la autopsia clínica y la histopatología para conocer los procesos nosológicos y dejó numerosas observaciones anatómicas y clínicas. Su asteroide, también.

Vesalius, Andreas (1514-1564), médico bruselense a las órdenes de Carlos V, padre indiscutible de la anatomía moderna. Su obra es un hito de los gordos para quienes nos dedicamos a la ilustración anatómica.

von Behring, Emil (1854-1917), médico bacteriólogo alemán, discípulo de Koch. Desarrolló antisueros para tratar la difteria y el tétanos, hasta ese momento enfermedades de alta mortalidad. Inauguró la lista de los premios Nobel de medicina en 1901. Asteroide.

von Békésy, Georg (1899-1972), químico y biofísico húngaro; fue un estudioso de la fisiología auditiva y desentrañó cómo funciona la cóclea, lo que le valió el Nobel en 1961.

Young, Thomas (1773-1829), médico, físico y políglota inglés que intervino junto con Champollion en el descifrado de los jeroglíficos. Hizo diversos aportes a la física de la resistencia de materiales, a la teoría ondulatoria de la luz y la fisiología ocular, donde estudió la refracción del ojo (acuñó el término astigmatismo) y aventuró una teoría de la visión cromática.


Esta es la lista de honrados con un cráter lunar hasta la fecha. Se echan en falta algunos personajes, como suele ocurrir en estos casos, por ejemplo Claude Bernard, Osler, los ya mencionados Servet, Haller y Ochoa, o muchos de los anatomistas clásicos de las escuelas de Bolonia y Padua.

Como curiosidad, hay un buen puñado de cráteres lunares a los que se tienen propuestos nombres de autores literarios, pero ninguno está aprobado por la IAU. Si queremos ver accidentes topográficos con nombres de literatos, músicos, compositores, pintores o escultores hay que irse a Mercurio, donde sus 400 cráteres se han reservado como olimpo artístico.

Anuncios

Epónimos: no son personas (2)

La inmensa mayoría de los nombres propios de enfermedades y síndromes corresponden a los apellidos de sus primeros descriptores, pero otras veces la denominación proviene del nombre de un paciente prínceps, de un territorio geográfico o, incluso, de personajes literarios. Ya comenté en un post de 2013 cuatro circunstancias donde los apelativos no eran apellidos de médicos o científicos: Ann Arbor (ciudad de Michigan), Chiba (ciudad de Japón), moyamoya (‘humo’ en japonés) y birdshot (‘perdigón’ o ‘perdigonada’ en inglés).

Hoy añado a la lista otras cuatro patologías con nombres guiris que no son apellidos de personas: la archifamosa enfermedad de Lyme, el también famosillo síndrome de savant y los menos conocidos mittelschmerz twiddler. Como vemos, de estos casos solamente Lyme merece mayúscula inicial.

El dolor entre reglas o mittelschmerz

Si lo leemos con mayúscula, Mittelschmerz suena a nombre alemán; y alemán es, pero no nombre, sino un término compuesto de mittel (medio, centro, mitad) y schmerz (dolor). Se refiere a un dolor pélvico que puede aparecer en mujeres a la mitad del ciclo menstrual y que se relaciona con la rotura del folículo ovárico que libera el óvulo.

Lo común es que el folículo pete silenciosamente hacia el día 14 del ciclo sin dar ningún tipo de aviso o señal de que está ocurriendo. En algunas mujeres, en cambio, la rotura folicular se acompaña de molestias o dolor pélvico debido a irritación peritoneal por sangrado ovárico u otras circunstancias relacionadas con la ovulación. El síntoma suele ser cíclico en las pacientes afectadas. Si tal dolor de mitad del ciclo fuera la norma serviría como indicador de los días fértiles y sería utilísimo para la planificación familiar, pero lo dicho, la mayoría de los ovarios escupen óvulos sin hacer ruido y sin respetar demasiado el cronograma del día 14.

folículo ovárico

Vista laparoscópica de un ovario con un jugoso folículo en el momento de la expulsión del líquido folicular que contiene el óvulo. Imagen publicada por Lousse y Donnez en Fertility and Sterility, 2008:90;833.

Debe diferenciarse el mittelschmerz de otras causas más relevantes de dolor pélvico, como apendicitis, embarazo ectópico, endometriosis o enfermedad inflamatoria pélvica. La ecografía suele ser útil para confirmar la sospecha clínica y evitar laparoscopias.

La primera descripción de este cuadro fue de William Priestley en el BMJ de octubre de 1872, bajo el nombre de «dismenorrea intermenstrual». La apelación de mittelschmerz data de 1881 y se debe al ginecólogo alemán Hermann Fehling (hijo del famoso químico Hermann von Fehling, el del reactivo de Fehling para detección de azúcares reductores).

La ortotipografía alemana suele escribir estos términos conceptuales con mayúscula (usan mayúsculas generosamente los germanos); los anglosajones son bastante laxos en poner mittelschmerz con mayúscula o minúscula y no acostumbran a usar cursiva; en castellano debemos escribirlo en minúsculas y en cursiva, y evitar construcciones como «síndrome de Mittelschmerz» que se confunden con un epónimo inexistente.

Lyme, en el condado de New London, el pueblo de las garrapatas

La enfermedad de Lyme es bastante conocida, más por aparecer en los medios por algún famosillo o famosilla del showbiz que la ha sufrido que por conocimiento real de su naturaleza. No cuesta imaginarse que Lyme sea un apellido, pero el nombre de la enfermedad proviene del pueblo de Lyme, pequeña localidad del estado de Connecticut, a medio camino entre Boston y Nueva York.

Lyme, Connecticut

Ubicación del pueblo de Lyme, condado de Nuevo Londres, estado de Connecticut.

Desde 1972 se estudiaron brotes de artritis febril en dicha localidad y otros pueblos cercanos, que en principio parecían casos de artritis reumatoide juvenil, pero posteriormente se vio su relación con picaduras de garrapata y sus frecuentes manifestaciones cutáneas, cardíacas y neurológicas. En 1982 Willy Burgdorfer aisló una nueva espiroqueta en garrapatas involucradas en la enfermedad; este microbio pasó a llamarse Borrelia burgdorferi en su honor (el género se llamaba así en honor de Amédée Borrel, investigador del Instituto Pasteur) y se confirmó como el agente causal de la enfermedad de Lyme.

Burgdorfer

Willy Burgdorfer (1925-2014), entomólogo médico. Vía irp.nih.gov.

Obviamente, el Lyme no es una enfermedad recientemente «inventada» ni desconocida antes de su caracterización en los años 70 y 80; muchas de sus manifestaciones ya se habían descrito mucho antes pero sin considerarlas una nueva entidad y sin conocer su causa. Además, la espiroquetosis de Lyme, como su prima lejana la sífilis, es parte de las grandes simuladoras, enfermedades con múltiples formas de manifestarse, que se confunden con cualquier cosa y que aparecen en la lista de diagnóstico diferencial de casi cualquier síndrome.

El reservorio de la enfermedad de Lyme está en animales silvestres —pájaros y mamíferos pequeños o grandes— de zonas boscosas del hemisferio norte, especialmente en Norteamérica y centro de Europa. En España la mayor incidencia está en el norte: Navarra, La Rioja, Euskadi, Castilla y León y zonas vecinas de monte y montaña.

El vector son las garrapatas del género Ixodes (aunque hay otras), que chupan las espiroquetas del animal infectado y la transmiten a otro en su siguiente picadura. La infección en humanos ocurre más durante el verano, debido al propio ciclo biológico del Ixodes y la mayor actividad campestre de los domingueros durante los meses de estío.

Ixodes ricinus

Estadios vitales del Ixodes ricinus: larvas de 6 patas (A), ninfas de 8 patas (B), macho adulto (C), hembra adulta (D) y su tamaño duplicado tras ingerir sangre. Tomado de Chrdel et al. Hum Vacc Immunother, agosto 2016.

La enfermedad de Lyme suele aparecer como un cuadro febril inespecífico, con artralgias y/o erupción cutánea. La manifestación más típica en esta fase es el eritema migrans, lesión rojiza en forma de diana que crece progresivamente. En algunos casos la Borrelia produce artritis, carditis y diversas manifestaciones neurológicas. La enfermedad puede cronificarse o dejar un síndrome post-Lyme.

Por lástima, no es fácil hacer un diagnóstico de certeza de la enfermedad de Lyme. Clínicamente se tiende a subdiagnosticar, mientras las pruebas de laboratorio tienen a sobrediagnosticarla por falta de especificidad. El tratamiento se basa en cefalosporinas, tetraciclinas o macrólidos.

The idiot savant, el tonto-listo

Una de las circunstancias más asombrosas de la neurología es la de aquellos individuos claramente discapacitados, dependientes, con bajo CI, dificultades de lenguaje, aprendizaje y socialización, pero que tienen una única capacidad mental extraordinariamente desarrollada, miles de veces superior a una persona normal. Esto es lo que actualmente se llama síndrome del savant, rarísima condición asociada con el espectro autista.

Los talentos prodigiosos de los savants suelen estar relacionados con una memoria hiperdesarrollada, pero se trata de una memoria mecánica, de datos, diríase de disco duro; no de una memoria operativa que ayude a procesar ideas o crear asociaciones. Esta supermemoria sirve de apoyo para expresar la capacidad especial de cada savant: unos son capaces de cálculos aritméticos complicadísimos y veloces, otros calculan o recuerdan fechas, otros identifican números primos enormes, otros son músicos excepcionales, otros recuerdan literalmente numerosos textos como si los hubieran escaneado, y otros pueden dibujar de memoria escenas complejas como si la tuvieran fotografiada en la cabeza.

La mayoría de los casos muestran sus habilidades desde edades muy tempranas y las desarrollan espontáneamente, sin necesidad de estudio ni entrenamiento. Pero fuera de ese talento prodigioso tienen grandes limitaciones para su vida diaria, para aprender otras actividades y para ser autónomos. La proporción varón-mujer es de 6:1. La mitad de los casos se acompañan de alguna forma de autismo y en la otra mitad hay otros tipos de déficits neurológicos. No hay causa conocida, no hay una única estructura cerebral alterada y tales casos siguen siendo un enigma tremendo.

Se han reportado historias de este síndrome desde el s.XVIII, pero la caracterización y el bautismo del cuadro se deben al británico John Langdon Down (1828-1896), quien se dedicó al estudio de los déficits intelectuales y retardos mentales. De hecho, de él recibe su nombre el síndrome de Down.

Dr. Down

John Langdon Down.

En 1887 presentó en una conferencia diez pacientes a los que llamó «idiots savants», es decir, «idiotas sabios». Con el tiempo se le eliminó el idiot y actualmente se suele emplear síndrome del savant o del sabio. En castellano debe escribirse savant en minúscula y cursiva, al ser un extranjerismo crudo, y no «síndrome de Savant», como si fuera un nombre propio.

Sin embargo, el término original del Dr. Down era mucho más descriptivo del cuadro, pues reunía la discapacidad mental del paciente y su habilidad extraordinaria. La aplicación de idiota en estos casos no es peyorativo, pues médicamente a quien padece una idiocia le corresponde la categoría de idiota. Una reconocida publicación de Down es Observations on an ethnic classification of idiots (1866).

Pero la utilización extramédica del término ha hecho que dejemos de usar ‘idiota’ como calificación diagnóstica, lo mismo que ha pasado con ‘mongólico’, ‘imbécil’ o simplemente ‘retrasado mental’, todos antiguamente usados en la práctica clínica, pero que se han vuelto ofensivos por su uso popular como insultos.

bannerpresentaciones

The Pacemaker-Twiddler’s Syndrome…

…A New Complication of Implantable Transvenous Pacemakers. Así tituló su artículo del Canad Med Ass Jde agosto de 1968 el entonces residente de cirugía cardiovascular Colin Bayliss (fallecido en 2010). El término inglés twiddle puede traducirse como girar, torcer, retorcer, enroscar o ensortijar. Se entenderá mejor a través de la expresión twiddling thumbs, extraordinariamente demostrada en este imprescindible video, que muestra una hábil maniobra que seguramente nunca hayáis hecho ninguno de vosotros en vuestra vida de mortales.

Pues eso es lo que le pasa al cable del marcapasos, que se retuerce, se enrosca, la punta del electrodo se sale de su sitio y el marcapasos funciona mal, con las posibles e incluso fatales consecuencias. Sea por problemas de fijación del generador o del cable, toqueteo transcutáneo del generador, por movimientos peculiares de los brazos del paciente (se ha descrito incluso tras fisioterapia) o por defectos del propio cacharro, el resultado es que le ocurre como a los cables espirales de los viejos teléfonos, que se enroscaban sobre sí mismos y no había manera de estirarlos. Esta complicación también se ha descrito en otros electroestimuladores, como los de médula espinal.

marcapasos enroscado

Torsión del cable de un marcapasos (pacemaker twiddler’s syndrome). Se muestra la imagen radiológica y el apecto operatorio del cable enroscado. Tomado de Arias et al. Rev Esp Cardiol 2012;65:671.

La cosa es que el pacemaker-twiddler’s syndrome se usa mal traducido en español como «síndrome de Twiddler», de nuevo imitando un epónimo inexistente y haciendo gala de desprecio a las normas del lenguaje. Para complicarlo más, el enroscamiento de los electrodos puede darse en otras configuraciones con su respectivo nombre descriptivo: ratchet (trinquete) o reel (bobina, carrete). En este artículo de Arias et al. en la Rev Esp Cardiol de julio de 2012 se explica la terminología y se propone el término «macrodislocación de electrodos», más global y adecuado.

O simplemente se podría llamar «torsión del cable» (incluso sin síndrome, que se lo tenemos que poner a cualquier cosa). Entre lo mal que hablamos y redactamos los médicos, y la de anglopaletadas que nos tragamos por desidia lingüística vamos a acabar a nivel de los brokers y entrepeneurs del bussines, con sus tradings, start-ups, networkings, coworkings, headhuntings y demás mamarrachadings, madre mía.

«Ceterum censeo Podemus esse delenda»

El hígado de Voronoi

Sin intención de generalizar, me parece que las matemáticas no se nos dan demasiado bien a los que nos dedicamos a la Medicina. La mayoría de mis colegas, y me incluyo, tendemos al anumerismo; tampoco es que en nuestro oficio diario necesitemos hacer cálculo infinitesimal ni geometría analítica. Las matemáticas que se aplican en nuestro oficio ya nos las dan «listas para usar» y, si de probabilidad y estadística se trata, recurrimos a esa especie protegida que son los epidemiólogos/bioestadísticos. La verdad es que me siento un bicho inferior cuando veo matemáticos o físicos desarrollando jeroglíficas ecuaciones.

Por suerte, dentro del gremio de los divulgadores científicos hay matemáticos que nos bajan la fruta del árbol para ponerla a nuestro alcance, por ejemplo el cachondo de Eduardo Sáenz de Cabezón (@edusadeci), o Clara Grima (@ClaraGrima), o Raúl Ibáñez (@mtpibtor), o Santi García Cremades (@SantiGarciaCC), o los chicuelos de la Universidad de Alicante (@DimatesUA) con su etiqueta #LasMatesNoSirvenPaNaPero.

Gracias a estos divulgadores me enteré de que había una cosa llamada diagramas de Voronoi, también llamados espacios o teselación de Voronoi. A pesar de la utilidad y universalidad de estos diagramas reconozco que no conocía al señor Voronoi hasta ver la abundante oferta divulgativa al respecto, por ejemplo «Cada uno en su región y Voronoi en la de todos» y «¿Está Voronoi? Que se ponga», ambos de la profesora Grima.

La visión de los espacios de Voronoi me resultó muy pero que muy familiar (y lo sería para cualquiera que haya estudiado histología). Pongamos una imagen habitual de este diagrama:

diagrama_voronoi

Típica imagen de un diagrama de Voronoi (o teselación de Dirichlet o polígonos de Thiessen). Cada punto verde domina un área en el cual cada punto del plano está más cerca de éste que de los puntos verdes vecinos. Vía stackoverflow.com.

La asociación inmediata es con una superficie tapizada de células, exactamente como el endotelio corneal o como los cúmulos celulares de un raspado de Papanicolaou. Veremos que muchísimas estructuras biológicas se arreglan siguiendo un patrón voronoide.

endotelio-corneal

El diagrama anterior es perfectamente superponible sobre esta imagen clínica del endotelio corneal obtenida mediante microscopía confocal. Vía Fabio Scarpa (researchgate.net).

¿De qué van los espacios de Voronoi?

De nuevo remito al lector a los links arriba mencionados, pero resumiré su esencia con brocha gorda: es un sistema para compartimentar un plano o espacio en circunscripciones, de modo que cada «centro de circunscripción» tenga influencia sobre todos los puntos del área que estén más cerca de él que de otros centros. Por ejemplo, si en un mapa se señalan los aeropuertos y un avión debe aterrizar de urgencia, las regiones de Voronoi indicarán cuál es el aeropuerto más cercano.

Esto se aplica cotidianamente en la geolocalización, cuando le dices al Google o al Siri que te busque la heladería más cercana. Es una herramienta muy útil en la determinación de áreas de influencia. Ya te digo yo, sin embargo, que la 🐀Agencia Tributaria🐀 no lo aplica en sus oficinas, porque me mandan a una que queda en el quinto carajo cuando tengo otra muy cerca (qué rabia me da esta gente).

bannerpresentaciones

Voronoi en biología

Como dijimos, muchos órganos y tejidos se estructuran siguiendo parcelaciones tipo Voronoi: las células de los recubrimientos epiteliales se adosan unas a otras formando un patrón poligonal; si vemos un corte transversal de fibras de músculo esquelético es claro tal patrón, lo mismo con los espacios del hueso trabecular; la venación de las alas de los insectos o las hojas de las plantas delimita espacios que siguen la distribución de Voronoi, y otro tanto pasa con las ramificaciones vasculares en los tejidos animales.

voronoi-ejemplos

Ejemplos biológicos de estructuras de Voronoi. Izquierda: sección transversal de tejido muscular estriado. Centro: hueso esponjoso visto en microscopía electrónica de barrido. Derecha: áreas delimitadas por las divisiones de las nervaduras de una hoja.

Pero quizás sea el hígado el órgano cuya estructura se ajusta más perfectamente a la teoría matemática de los espacios de Voronoi. El tejido hepático está formado por lobulillos que en un corte histológico tienen forma más o menos hexagonal y en el eje de cada lobulillo está una vena centrolobulillar que recoge toda la sangre de su lobulillo, respetando la segmentación voronoide. El árbol que recoge el drenaje de estas venas centrolobulillares acaba en las grandes venas suprahepáticas que desembocan en la cava inferior.

higado-voronoi

Histología hepática en corte histológico. En el esquema se observa cómo los lobulillos hepáticos tienen una distribución voronoide, donde cada área está dominada por una vena centrolobulillar (A). En los vértices de las áreas están las tríadas portales (B) compuestas por ramas de la vena porta, la arteria hepática y la vía biliar. Si se hacen triangulaciones de Delaunay a partir de las venas centrales (líneas segmentadas azul claro) se aprecia cómo las tríadas portales quedan vecinas al centro de los triángulos.

En los vértices de los polígonos lobulillares están los espacios porta, donde discurren las tríadas portales: ramificaciones de la vena porta, la arteria hepática y la vía biliar. La ubicación de estas tríadas en los vértices facilita que sus vasos aporten sangre más o menos equitativamente a los lobulillos que lo circundan y que, igualmente, los colectores biliares recojan la bilis indistintamente de ellos, siguiendo un patrón similar a una triangulación de Delaunay. En un corte bidimensional es fácil asimilar esta estructura, pero es más complejo visualizar el adosamiento de los lobulillos en tres dimensiones; el común de los esquemas dibujan los lobulillos como salchichitas de cóctel apiñadas.

He aquí un órgano majestuoso cuya arquitectura se rige por principios matemáticos. La relación de los diagramas de Voronoi con la teoría de grafos y con los fractales también se cumple en los seres vivos.

Georgui Feodósievich Voronoi

georgy_voronoy

Georgui Voronoi (1868-1908), matemático ruso.

Este matemático nació en Ucrania en 1868 y falleció a los tiernos 40 años en 1908, en Varsovia; sin embargo, se considera de nacionalidad rusa pues esos territorios pertenecían entonces al imperio del Zar. Su padre era profesor de instituto y el chaval era muy estudiosito él. Hizo la carrera de Matemáticas en la Universidad de San Petersburgo entre 1885 y 1889. Allí también se doctoró y su tesis recibió el premio Bunyakovsky de la Academia de Ciencias de San Petersburgo.

A partir de 1894 fue profesor en la Universidad de Varsovia y del Instituto Politécnico. Trabajó en teoría de números, fracciones continuas (algoritmo de Voronoi), números de Bernoulli, integrales de números algebraicos, teoría de probabilidades, geometría analítica, funciones asintóticas, funciones cuadráticas perfectas y, por supuesto, en sus teselaciones epónimas, que fue uno de sus últimos trabajos.

A pesar de haber sido un trabajador empedernido, tuvo tiempo para su historia de amor con Olia Kritska, con quien tuvo seis churumbeles. En Voronoi se dio esa dupla de adicción absoluta al trabajo y mala salud, para que luego digan que el trabajo es sano. El año de su fallecimiento fue diagnosticado de cólicos biliares y sus médicos le recomendaron irse de prolongadas vacaciones al balneario checo de Karlsbad, cosa que el matemático —demostrando que no tenía ni una gota de sangre española— rechazó para seguir trabajando. Al final se agravó su afección hepatobiliar y murió traicionado por ese órgano cuya estructura se basa en sus matemáticas.

Su cuerpo fue embalsamado y trasladado a la cripta familiar en su pueblo natal, la villa ucraniana de Zhuravki, donde descansó en paz hasta 1932. Ese año la barbarie fanática de las colectivizaciones y el terrorismo de estado de Stalin llevó a los colectivos a destrozar la casa familiar y la cripta de los kulaks Voronoi; los restos de Georgui y su padre fueron tirados a la calle y posteriormente arrojados a una fosa común. Qué bonito, qué bello.

Para más información biográfica sobre Voronoi está este artículo de H. Syta y R. van de Weygaert de acceso libre.

Los diagramas de Voronoi se utilizan en investigación biomédica, por ejemplo en estructuras tridimensionales de proteínas y otras moléculas, patrones de crecimiento tumoral, organización celular tisular, contajes celulares, análisis de imágenes microscópicas o radiológicas o estudio de conexiones neuronales, entre otras cositas.

 

«Ceterum censeo Podemus esse delenda»

Doppler

Físicos haciendo Medicina: Christian Doppler

«Pídele un doppler», dice el torradillo adjunto al residente, quien lo apunta tal cual en el papel, a lo mejor con una ‘p’ de menos. La ecografía-doppler es una prueba de lo más común actualmente, pero el principio en el que se basa fue formulado hace 175 años en Praga por el físico, matemático y astrónomo Christian Andreas Doppler. La RAE acepta ‘doppler’ con minúscula y cursiva para referirse a la prueba médica, y ‘efecto doppler’ como denominación del fenómeno físico. No sé si cuando el propio nombre pasa a ser el nombre de una cosa y a escribirse con minúscula significa un rotundo éxito profesional o, al contrario, una desmemoria del personaje.

La historia del efecto Doppler comenzó con una aberración óptica y su explicación astronómica, pasó a los pitos de los trenes, después a la radiación electromagnética y a la relatividad especial, de allí se aplicó a la expansión del universo, a los radares, a los sonares, a los satélites y, por último, a los ultrasonidos para que las embarazadas lagrimeen cuando escuchan el corazón de su fetito.

Christian Doppler

Christian Andreas Doppler en foto de 1853. Vía www.christian-doppler.net.

Toda la vida picando piedra

Christian Doppler nació en Salzburgo en 1803. Su casa natal está a cuatro pasos de la de Mozart (números 1 y 8 de la Makartplatz, respectivamente) y, al igual que Mozart, hizo fama en otros lares y poco pisó su ciudad natal tras abandonarla. La mala salud respiratoria que siempre padeció el muchacho le permitió librarse del negocio familiar de picar piedra en cantera-construcción y pudo cultivar su talento para la matemática y la física. Sin embargo, tras acabar sus estudios en Linz y Viena siguió «picando piedra» con contratos temporales, bajas, becas, portamaletines de profesores, etc. Tras cuatro años de oposiciones fallidas y precariedad laboral (nada nuevo bajo el sol) estuvo tan harto que decidió irse a hacer las Américas, pero en último momento encontró una plaza de profesor preuniversitario en Praga y allá se fue a vivir durante más de una década.

Tanto en la preparatoria como en la Universidad de Praga Doppler picó piedra como nadie, asumió una enorme carga lectiva, con muchos alumnos, muchas clases y muchas evaluaciones. Tuvo fama de coco, de profesor durísimo. Ese mantenido esfuerzo vocal en sus conferencias no le ayudó en su salud, considerando que padecía tuberculosis laríngea.

En 1848 se cambió al Instituto Politécnico de Viena y en 1850 fue nombrado director del recién inaugurado Instituto de Física de la Universidad de Viena. Allí tuvo entre sus discípulos al padre Gregor Mendel, famoso horticultor de leguminosas. La tuberculosis siguió consumiéndolo y en 1853 se trasladó a Venecia, como tantos tuberculosos de su época, en busca de un clima beneficioso para su mal. Doppler murió allí al cabo de unos meses.

Publicó medio centenar de trabajos científicos, de los que casi ninguno tuvo relevancia, bien por ser ideas de bombero o por quedarse atrás respecto a contribuciones de sus contemporáneos. Únicamente la descripción del efecto Doppler le ha valido merecida fama.

Fiiiiiiiiiiuuuuuuuu… el efecto Doppler

El origen de la observación, el planteamiento del fenómeno y su aplicación para explicar lo que Doppler pretendía no fueron correctos del todo, pero la idea central resultó ser cierta y trascendente. Doppler buscaba una explicación para la aberración de la luz estelar descrita por Bradley en 1725, es decir, un desplazamiento aparente de la posición de una estrella debido a la velocidad de traslación de la órbita terrestre. El profesor Doppler filosofó acerca del efecto que podía tener un desplazamiento a alta velocidad sobre las ondas emitidas por las estrellas: argumentó que si un cuerpo celeste se desplaza a gran velocidad distorsiona las ondas de la luz que emite, de modo que por una parte estarán más apretadas —tendiendo al azul— y por otra más holgadas —tendiendo al rojo—. Así lo publicó en 1842 en su obra Ueber das farbige Licht der Doppelsterne und einiger anderer Gestirne des Himmels (Sobre el color de la luz de las estrellas binarias y otros astros celestes).

Doppler publicación

Portada de la breve obra original de Christian Doppler donde enuncia su efecto epónimo. Vía Google Books.

La verdad es que ello no explicaba la aberración de Bradley y la tecnología de la época no estaba para observar corrimientos al rojo o al azul en los cuerpos celestes. Sin embargo, el principio propuesto por Doppler era aplicable a cualquier variedad de onda, sea electromagnética, de sonido o las ondas mecánicas producidas en un estanque tranquilo por un objeto que se desplaza en su superficie.

Tres años después de la publicación el efecto fue demostrado experimentalmente para las ondas sonoras por el holandés Buys Ballot. Puso a músicos a emitir una nota concreta desde un tren en marcha y a otros músicos a replicar la nota que oían desde tierra según pasaba el tren. Así se observó un aumento de la frecuencia aparente del sonido cuando el tren se acercaba y una reducción de frecuencia cuando se alejaba.

Doppler Buys-Ballot

Buys Ballot intentó demostrar que la idea de Doppler era errónea, pero acabó confirmándola. Aunque se nos antoja un experimento sencillo y evidente, a Buys Ballot le costó lo suyo acabarlo con éxito. El músico del tren no aprecia cambios en su nota, mientras el que oye en tierra sí detecta un cambio aparente del tono por el cambio de frecuencia inducido por el desplazamiento.

Actualmente el efecto Doppler es fácil de observar a pie de calle con cualquier coche que pasa, cualquier sirena de ambulancia o quinqui con música a toda castaña en su vehículo tuneado. Pero antes de la revolución industrial no había objetos que se desplazaran a gran velocidad y que pudieran distorsionar el sonido, excepto proyectiles de cañón —si bien durante un bombardeo nadie se pone a pensar en frecuencias de onda—.

Musicis digressio.- Los compositores clásicos no han usado mucho la imitación del efecto Doppler en sus obras. Lo más parecido que me viene a la mente es precisamente en simulación de bombas y pirotecnia bélica. El ejemplo más siniestro está en la Octava Sinfonía de Shostakovich. Las «sinfonías de guerra» de Shostakovich son la auténtica banda sonora de la Segunda Guerra Mundial. La 8.ª sinfonía data de 1943, en lo más álgido del conflicto. Su tercer movimiento es una hipotiposis bélica de seis minutos de música tensísima, conducidos por un tema en ostinato de las cuerdas sobre el que los bajos y la percusión dan golpes como de detonación y, cada tanto, se repite una figura con una larga nota aguda seguida por un salto con ligadura a su octava inferior, cosa que recuerda el paso doppleriano de un obús.

shostakovich_octava sinfonía

Fragmento del tercer movimiento de la octava sinfonía Op. 65 de Dimitri Shostakovich, donde se observa la figura musical que recuerda al efecto Doppler de un proyectil. Los violines hacen una nota larga y aguda in crescendo, que súbitamente baja en glissando. Las violas tocan el tema en ostinato que vertebra la pieza.

El segundo ejemplo está traído por los pelos, la verdad: está en el Concierto Emperador de Beethoven. Este 5.º concierto para piano también tiene un trasfondo bélico pues se compuso durante el ataque de Napoleón a Viena. Hay un breve momento de diez compases en el desarrollo del primer movimiento donde el pianista toca progresiones ascendentes del tema principal (fortspinnung) mientras la mano izquierda acompaña con escalas descendentes cromáticas que acaban con la pulsación del compás acompañadas de acentos de la orquesta. El efecto es una reminiscencia de batalla con proyectiles cayendo —no digo que ésta fuera la intención del compositor—, como aquellos cañonazos franceses que tanto aterraron a Beethoven, escondido en el sótano de casa de su hermano y cubriendo su cabeza con cojines para mitigar el malestar que las explosiones tenían que causar a sus perjudicados laberintos. Ni este enorme concierto ni ninguna otra obra de su período «heroico» puede encasillarse como música marcial y de soldaditos —bueno, la excepción es ese truñico llamado La batalla de Vitoria, Op. 91—, aunque algunos analistas se queden en esa observación superficial. La obra de Beethoven es infinitamente trascendente.

beethoven emperador

Pequeño segmento del quinto concierto para piano Op. 73 de Beethoven. La mano derecha del pianista toca un fortspinnung del tema principal, con aire batallador, mientras la izquierda hace repetidos descensos cromáticos. Estas figuras descendentes también las usó Beethoven en su antes mencionado Op. 91.

Doppler, relatividad y big bang

El efecto Doppler es un postulado relativístico, ya que depende del movimiento relativo del objeto emisor respecto a un observador referencial. El músico que va en el tren no nota ninguna variación en la nota que está emitiendo, mientras que el observador que escucha inmóvil sí nota la deformación sonora inducida por el desplazamiento de la fuente emisora.

De hecho Einstein tiró del efecto Doppler-Fizeau como parte de su teoría de la relatividad especial de 1905 (Hippolyte Fizeau describió en 1848 el mismo fenómeno que Christian Doppler aplicado a las ondas electromagnéticas). Según ello un objeto que se acerca al observador a una velocidad cercana a la luz presentaría un corrimiento al azul en la luz que emite, mientras que si se aleja se apreciaría un corrimiento al rojo.

Los astrofísicos observaron mediante espectroscopia que las galaxias muestran un corrimiento al rojo, es decir, se están alejando unas de otras. Ello condujo al padre Lemaître y a Hubble (en 1927 y 1929, respectivamente) a formular la teoría de la expansión del universo. Si se está expandiendo es porque en el pasado la materia cósmica estuvo concentrada en un punto, y esa es la base de la teoría del big bang y del cálculo de la edad del Cosmos. Casi na.

Doppler

Christian Doppler (1803-1853), aquí con el disfraz de “efecto Doppler” de Sheldon Cooper.

El efecto Doppler es uno de los principios del radar. También se considera en telecomunicaciones para corregir señales de satélites; incluso una persona que usa su móvil desde un vehículo en marcha presenta una deformación de las ondas de radiofrecuencia que puede afectar a su rendimiento.

El doppler para detectar flujos

Hablo de flujo sanguíneo, por supuesto, no lo que los ‘gines’ llaman flujo. La tecnología del eco-doppler suma los principios del efecto Doppler y de la ecolocalización; este último es la base de la ecografía convencional y del sonar que usan los barcos, los cetáceos y los murciélagos.

satomura_doppler

Shigeo Satomura y su publicación en japonés sobre eco-doppler en la Revista de la Sociedad Acústica Japonesa de 1959. Satomura murió al año siguiente por una hemorragia subaracnoidea.

El grupo del físico Shigeo Satomura (1919-1960), en Osaka, fue el primero en pensar cómo aplicarlo en el estudio no invasivo del sistema cardiovascular durante los años 50 del s.XX. En la siguiente década se sumaron más investigadores en otros países, entre quienes destaca Robert F. Rushmer (1914-2001), de Seattle. En los años 80 se desarrolló el eco-doppler bidimensional.

rushmer_doppler

Foto de Robert Rushmer, pionero del doppler clínico (vía U.S. National Library of Medicine) y figura de su artículo junto con Dean Franklin en la revista Science del 25 de agosto de 1961.

Los equipos de doppler médico se fueron sofisticando y redujeron su tamaño. Ahora es de uso común en cualquier centro de ecografía, cirugía vascular, hemodinamia u obstetricia. Hasta se venden dopplers de andar por casa por poco más de 20 € para que las embarazadas escuchen el corazón de sus bebés cuando quieran.

El doppler permite localizar vasos sanguíneos al detectar su flujo, mide la velocidad del flujo, su dirección, la presencia de turbulencias y el ritmo de las pulsaciones. En los modos dúplex y tríplex suma información funcional a la información anatómica que da la ecografía modo B. Resulta básico en la monitorización fetal, en la enfermedad vascular periférica, en el estudio de la enfermedad carotídea, determina inversiones de flujo en venas arterializadas por fístulas o malformaciones arteriovenosas, y no se diga su utilidad en ecocardiografía.

doppler umbilical

Imagen de ecografía doppler de la vena y las arterias umbilicales (www.kpiultrasound.com).

De nuevo vemos aquí dos características de la buena Ciencia: primero, la universalidad de sus principios permite aplicarlos en áreas totalmente alejadas de donde se realizó la investigación original; así, una idea originada en lejana astrofísica ha terminado aplicándose en la vida común, sea para ponerte una multa por radar o para diagnosticarte la cardiopatía que afloró tras recibir la multa. Segundo, el trabajo aditivo y colaborativo de los científicos, pues la ecografía-doppler no existiría sin otro montón de aportes, desde la propuesta de Spallanzani sobre la existencia del ultrasonido hasta el descubrimiento del efecto piezoeléctrico hecho por los Curie. La pseudociencia y la charlatanería no logran recorrido, hacen daño en donde se inventan (por lástima, demasiado en salud) y no pueden progresar con nuevas evidencias.

«Ceterum censeo Podemus esse delenda»

bannerpresentaciones

anatomía del ángulo iridocorneal

Ilustrando “Cirugía microincisional del glaucoma”

En el pasado 92 Congreso de la Sociedad Española de Oftalmología (Málaga, 21-24 de septiembre de 2016) se presentó la monografía “Cirugía microincisional del glaucoma” coordinada por los doctores Cosme Lavín Dapena (Hospital La Paz, Madrid) y Pablo Alcocer Yuste (Hospital Nisa 9 de Octubre, Valencia). Es el volumen 47 de esa serie de libros azules que edita la SEO cada año, bajo el extraño título de “mesa redonda”. Tuve el gusto de ser solicitado por Cosme para ilustrar la monografía.

MIGS y otras incisiones pequeñitas

Este completo libro recoge un numeroso catálogo de procedimientos para tratar el glaucoma que han ido proliferando en los últimos años y que tienen en común practicarse a través de incisiones mínimas en el globo ocular, sea en córnea o en esclera. Con ello se intenta dar opciones de tratamiento a aquellos pacientes en quienes el tratamiento farmacológico es insuficiente o mal tolerado y, por otra parte, reducir los riesgos y complicaciones propios de la trabeculectomía y otras cirugías filtrantes.

El célebre y melenudo glaucomatólogo Ike Ahmed acuñó el acrónimo MIGS (minimally invasive glaucoma surgery) para referirse a técnicas realizadas a través de la cámara anterior (ab interno) y mediante microincisiones. Esta definición es bastante restrictiva y no engloba todas las opciones disponibles actualmente y que sí aparecen en la monografía de Lavín y Alcocer.

Aquí se clasifican las técnicas según su mecanismo de actuación (aumento de filtración trabecular, aumento de flujo uveoescleral o drenaje subconjuntival) y según se realicen por vía ab interno o ab externo.

Muchos procedimientos consisten en clavar un dispositivo en el ángulo iridocorneal: Xen®, Cypass®, iStent®, Hydrus®, ExPress®, InnFocus®, SOLX Gold Shunt. Otros se dedican a raspar o abrir el trabeculum mediante instrumental específico: Trabectome®, Kahook Dual Blade, trabeculostomía con láser excimer. Otros dilatan el propio canal de Schlemm: viscocanaloplastia, expansor de Stegmann. Finalmente hay una miscelánea de otras técnicas: EPNP con láser CO2, SIGS, goniosinequialisis.

Los interesados podéis intentar conseguir el libro a través de la SEO, de algún amigo socio o mediante el camello bibliográfico de confianza.

Mis dibujos

El libro tiene una buena cantidad de material fotográfico y de ilustraciones. De éstas –no todas son mías– realicé 25 láminas sobre anatomía del ángulo y canal de Schlemm, fisiología del humor acuoso, funcionamiento de diversos dispositivos y técnicas quirúrgicas. Dejo unas pocas muestras a continuación y otras que pueden verse en mi porfolio. De más está decir que las figuras tienen todos los derechos reservados, y por partida doble.

anatomía del ángulo iridocorneal

Disección artística del limbo esclerocorneal y del ángulo de la cámara anterior, que muestra la disposición y relaciones del canal de Schlemm.

iStent

Dispositivo iStent, microscópica pieza metálica que se inserta dentro del canal de Schlemm para mejorar el drenaje de humor acuoso.

dispositivos MIGS

Algunos dispositivos empleados en la cirugía microincisional del glaucoma. Obviamente no se ponen todos juntos.

Gold Shunt

Gold Shunt, pieza de oro que se implanta en el espacio supracoroideo a modo de válvula para derivar humor acuoso hacia este espacio de reabsorción.

Con encargos de esta magnitud uno se acaba metiendo tanto que ya me conocía el ángulo iridocorneal como si lo hubiera parido, en todas las proyecciones posibles, y hasta soñar que viajaba por dentro del canal de Schlemm como su fuera una fucking iTrack probe.

bannerpresentaciones

¡Schlemm!

Todas estas nuevas técnicas quirúrgicas requieren un conocimiento detallado del canal de Schlemm y las zonas aledañas del ángulo iridocorneal. Es un espacio muy pequeño pero muy especializado y de compleja estructura, representativo del maravilloso diseño del ojo en cada uno de sus rincones.

En el capítulo de anatomía quirúrgica de la monografía Lavín/Alcocer participamos Carlos Arciniegas, Susana Duch y yo mismo, todos del ICO de Barcelona. Allí se detalla en texto e imagen los puntos anatómicos del ángulo con importancia quirúrgica, que son casi todos, y algunos trucos útiles para su disección.

Friedrich Schlemm (1795-1858) fue un anatomista alemán proveniente del gremio de los barberos-sangradores, cirujano de batalla, de mucho hacer y poco filosofar. En sus tiempos de estudiante pasó sendas veces por comisaría, una por disecar un fiambre sin consentimiento de sus familiares y otra por desenterrar una fallecida quince días después de enterrada –no será el único estudiante de anatomía que salta el muro del camposanto, ¡hasta Cajal lo hizo!, o intercambia una osamenta por una botella de ron con el vigilante del cementerio, pero el fin común es obtener huesos, no apropiarse de un cuerpo entero semiputrefacto–.

A pesar de su humilde origen llegó a profesor de anatomía de la Universidad de Berlín y allí, siguiendo su pragmatismo, se dedicó a preparar y disecar cuerpos. Aún hay piezas disecadas por él expuestas en el Berliner Medizinhistorisches Museum der Charité, un museo que todo médico debería visitar si pasa por la capital alemana.

Friedrich Schlemm

Retrato de un exotrópico Friedrich Schlemm (litografía de la Universidad Humboldt de Berlín). A la derecha está la descripción original del canal publicada en el “Theoretisch-praktisches Handbuch der Chirurgie” de Rust (1830): “A lo largo de esta depresión corre un conducto circular de paredes finas, que descubrí en el año 1827 en el ojo de un hombre que se había ahorcado, ya que estaba lleno de sangre, pero en el que una fina cerda también se podía introducir fácilmente después de que la córnea y la esclerótica se seccionaran de adelante hacia atrás. No hay que confundir este canal con el de Fontana.”

Schelmm tuvo especial interés en el estudio de la vasculatura de cabeza y cara, sobre la que publicó un par de disertaciones en latín. En una de ellas describió los nervios del estroma corneal. Observó en 1827 un conducto circunferencial lleno de sangre en el ángulo de unión de la córnea y el iris en los ojos de un suicida ahorcado; obviamente el ahorcamiento favoreció la acumulación de sangre en este canal, normalmente lleno de humor acuoso, y destacó su presencia durante su estudio anatómico macroscópico. En 1830 comentó su descubrimiento en la enciclopedia quirúrgica de J.N. Rust Theoretisch-praktisches Handbuch der Chirurgie y en 1831 publicó su trabajo “Über einen kreisförmigen dünnhäutigen Kanal in der Verbingdunsstelle der Cornea und Sclerotica in menschlichen Auge”.

Fontana y Leber

Felice Fontana (izquierda), primero en describir el tejido reticular del trabeculum en el ojo bovino. Theodor Leber (derecha, doble de acción de Charles Darwin), además de describir la neuropatía y la amaurosis que llevan su nombre, indicó correctamente la función del canal de Schlemm.

Antes que Schlemm la zona del trabeculum había sido estudiada por el italiano Felice Fontana (1730-1805), polifacético científico interesado por la física, la química, la fisiología y primero en observar el nucléolo celular. Su hermano Giorgio Fontana fue el matemático que introdujo las coordenadas polares.

Ni Fontana ni Schlemm aclararon la función de este anillo vascular del borde corneal; fue el célebre oftalmólogo Theodor Leber (1840-1917) quien apuntó su papel en el drenaje de humor acuoso y, por tanto, su importancia en el control de la presión intraocular.

“Ceterum censeo Podemus esse delenda”

Físicos haciendo Medicina: Augustin Fresnel

¿Qué relación tienen la Carmen de Bizet, la diplopía, las TV de pantalla plana, las hemianopsias, los faros, la presbicia y la energía solar? Adivinaréis que la respuesta está en el personaje del título: Augustin-Jean Fresnel, físico óptico e ingeniero francés, nacido en Broglie —Normandía— en 1788 y fallecido en la flor de la edad, en 1827 cerca de París.

Fresnel hizo importantes aportes a la física de la luz y la mecánica óptica, algunos de los cuales tienen buen aprovechamiento en la oftalmología moderna. Los oftalmos solemos pronunciar mal su apellido, colocando la tónica en la primera ‘e’ cuando lo correcto es que recaiga en la segunda sílaba y que la ‘s’ apenas se pronuncie. Estos errores en la prosodia gálica los tenemos con otros insignes franceses como Tenon o Descemet.

Develo la primera incógnita de la pregunta introductoria: el apellido materno del amigo Augustin era Mérimée. Resulta que Fresnel era primo de Prosper Mérimée (1803-1870), el autor del celebérrimo novelín Carmen (1845), sucesivamente transformado en montón de adaptaciones de teatro, cine y televisión, pero sobre todo esta apología de la violencia machista fue inmortalizada por Georges Bizet (1838-1875) en su ópera Carmen.

Curiosité: Prosper Mérimée mantuvo una borrascosa relación con la andrógina intelectual romántica George Sand pocos años antes de que ésta se emparejara con el no menos andrógino Frédéric Chopin.

A la luz por Napoleón

Augustin Fresnel

Retrato de Fresnel (1788-1827). Vía Smithsonian Libraries.

Augustin fue un niño zoquete, uno de esos críos con dificultad de aprendizaje que parecen destinados a no servir para nada pero que de mayores sorprenden por su genialidad (como le pasó a Einstein).

Se formó como ingeniero y trabajó haciendo puentes hasta 1814, cuando fue destituido por Napoleón debido a sus inclinaciones borbónicas. Aprovechó su excedencia forzosa para ponerse a estudiar la luz y diversos fenómenos ópticos.

Sus trabajos repotenciaron la teoría ondulatoria de la luz tras más de un siglo de hegemonía de la teoría corpuscular newtoniana (en este post se trata de ello en extenso). Las observaciones de Fresnel sobre la difracción, la luz polarizada y las interferencias se explicaban mejor mediante un modelo de ondas de luz. Junto a su colega François Arago –quien llegó a primer ministro francés– enunció las leyes de la interferencia de luz polarizada y también algunos fenómenos de aberración óptica.

La lente de Fresnel

Este artilugio es el que más fama le ha dado a su autor, especialmente en óptica, optometría y oftalmología. Fresnel buscaba una solución al problema de iluminación de los faros costeros, pues se quería mejorar la direccionalidad y alcance de la luz emitida en ellos. Desde la antigüedad lo más que se había logrado era poner un espejo cóncavo detrás de la fuente de luz; después se añadió una lente convexa por delante (lente + espejo: sistema catadióptrico), pero el tamaño de las lentes necesarias hacían poco viable el invento.

Geometría y usos de las lentes de Fresnel. Vídeo elaborado por la editorial científica Kekulé.

Fresnel sabía que la refracción de la luz dependía del ángulo de incidencia respecto a la superficie de la lente y no del grosor de la misma, así que fragmentó la superficie de la lente y la adaptó en forma de una lente compuesta escalonada muy plana; así evitó los problemas de grosor, peso y aberraciones propios de las lentes gigantes y gordas. En este link se puede leer su artículo original.

Con la colaboración de Arago se hizo un ensayo público sobre el mismo Arco del Triunfo de París y, tras su éxito, se instaló la primera lente de Fresnel en el faro de Cordouan en la La Gironde, en 1823.

Lente de faro

Lámpara y enorme lente de Fresnel del faro de la Isla de Seguin, Maine, USA. Foto vía pjmorse, flick.com.

La lente de Fresnel tenía antecedentes nobiliarios, pues tanto el conde de Buffon como el marqués de Condorcet, ambos ilustradísimos eruditos del s.XVIII, habían diseñado artilugios parecidos con otros fines. El invento de Fresnel se popularizó en la construcción de faros y otros sistemas de iluminación, pero sus aplicaciones son bastante extensas, como veremos.

Fresnel en la Oftalmología

Hay defectos refractivos demasiado grandes para ser solventados con gafas llevaderas, que requerirían artilugios incluso más allá de las lentes tipo cenicero o culo de botella. Ello es especialmente álgido en las lentes prismáticas necesarias para corregir desviaciones oculares y apañar la diplopía, pues la base de un prisma puede ser bastante ancha.

Hay diversos trucos para reducir el grosor de los prismas, como repartir el total de dioptrías entre los dos ojos, usar lentes de alto índice de refracción o con retallado digital. Sin embargo, ante casos de diplopía de reciente aparición puede ser útil algún tipo de prisma temporal, económico y fácil de readaptar si cambia el ángulo de desviación: allí es donde entran los prismas de Fresnel.

El principio de Fresnel se aplica tanto a lentes esféricas como cilíndricas o prismáticas. Los prismas de Fresnel se moldean en una lámina de plástico fino y flexible que se adhiere a una gafa común. Así el paciente puede aliviar su visión doble durante la primera fase, hasta que haya resolución o estabilidad de la desviación, en cuyo caso se sustituye el prisma adhesivo por una lente de montura que incluya la corrección prismática.

El problema del prisma tipo Fresnel es que sus múltiples líneas paralelas estorban en la nitidez de la imagen. Los prismas adhesivos se comercializan desde 1970 y la marca más prodigada es Press-OnTM, comercializada por la compañía 3M.

Hillary Clinton lente de Fresnel

Hillary Clinton, aparte de alta miope, sufrió una trombosis de seno transverso en diciembre de 2012. Como consecuencia tuvo una paresia del VI nervio craneal y uso temporalmente un prisma Press-On en su ojo izquierdo, como vemos en esta foto (vía heraldo.es). Nótese la simetría del reflejo corneal de Hirshberg gracias al prisma.

Otro uso que se ha buscado a los prismas adhesivos es mejorar la percepción campimétrica en personas con hemianopsias homónimas, donde un daño neurológico en la vía óptica hace desaparecer la misma mitad –derecha o izquierda– del campo visual en los dos ojos. La aplicación de bandas prismáticas parciales sobre las gafas ayuda a desplazar la imagen de los objetos del campo afectado para que caigan dentro del campo funcionante.

Fresnel hemianopsia

Bandas prismáticas tipo Fresnel de 40 DP para mejorar el campo visual temporal en una persona afectada de hemianopsia homónima izquierda. El resultado no es una maravilla, pero puede ser una buena ayuda. Bowers AR et al. Arch Ophthalmol. 2008;126:657 (acceso libre).

La derivación más importante de las lentes de Fresnel está en el mundo de las lentes intraoculares multifocales. Este tipo de lente intraocular (LIO) intenta suplir el mecanismo enfoque a distintas distancias que se pierde con la presbicia y que una LIO monofocal clásica no resuelve tras operar las cataratas.

LIO trifocal

LIO trifocal difractiva colocada en el saco cristaliniano. Es claro el diseño fresneliano de estas lentes. Vía Ophthalmology Times.

El modelo básico de una LIO difractiva multifocal consiste en una serie de lentes anulares concéntricas, según Fresnel, pero la altura y ancho de cada escalón se va reduciendo hacia la periferia de la LIO; es lo que se llama lente apodizada. Otros modelos alternan escalones más altos con otros más bajos para así tener varios puntos focales. El enfoque de objetos según la distancia depende del punto focal donde caiga su imagen, pero también de la iluminación y el tamaño pupilar.

puntos focales LIO multifocal

Formación de dos puntos focales (flechas blancas) al pasar un haz láser por una LIO multifocal difractiva. Vía domedics.ch.

Otras aplicaciones de las lentes de Fresnel

Hay lentes de éstas en cosas tan banales como esas lupas planas tipo tarjeta pero también en diversos cacharros con componentes ópticos, como reflectores para iluminación teatral o proyectores de diapositivas, transparencias y cine. Los faros de los coches siguen aplicando el principio de Fresnel y ello se reconoce en las líneas de las lunas que cubren sus bombillas.

A mediados de los años 90 comenzaron a venderse televisores con pantalla plana. La «necesidad» de tener pantallas de TV cada vez más grandes chocaba contra la limitación de longitud del tubo catódico. Una primera aproximación a la TV plana fue el modelo de televisor con retroproyección, donde la imagen se generaba en lámparas a relativa poca distancia de la pantalla, la cual estaba tapizada por una lente plana de Fresnel encargada de «enderezar» la líneas de proyección y colimar la imagen hacia la posición del televidente. Este tipo de TV aún tenía forma de cajón, pero significativamente menos profundo que las viejas teles catódicas.

TV fresnel

Televisor “pantalla plana” de retroproyección, el último grito tecnológico de hace 15 años. Éste lo venden de segunda mano por 80 €, por si a alguno le interesa.

La reducción de precios de las TV de plasma y LCD, verdaderamente planas y con mejor imagen, sacaron del mercado las TV fresnélicas en los primeros años 2000. Actualmente mandan las teles LED y aquella primigenia pantalla convexa que usamos tantas décadas se ha ido hundiendo hasta las modernas TV de pantalla cóncava que envuelven visual y posesivamente al espectador.

Video que muestra el poder incendiario de una pantalla de Fresnel sacada de una TV de “rear projection”.

El poder focalizador de luz de un panel tipo Fresnel, plano y liviano, lo hace candidato para aprovechamiento de la energía solar. Un rayo solar concentrado así puede alcanzar una temperatura altísima. También se ha usado el sistema en cocinas solares para domingueros ecológicos.

Augustin Fresnel falleció con apenas 39 añitos, de tuberculosis, esa romántica enfermedad que se cepilló a tantas celebrities del s.XIX. Está enterrado en el cementerio parisino de Père-Lachaise, donde también yacen otros personajes de este cuento: su compi Arago, Georges Bizet y Chopin, el famoso tuberculoso que compartió mujer con el primo de Fresnel. Otro enterrado aquí es el profeta homeópata Samuel Hahnemann, en la división 19; es bueno saberlo por si os entran ganas de mear mientras visitáis el cementerio.

Adenda: siguiendo las observaciones de la Dra. Alicia Galán, señalada estrabóloga y próxima autora de la Editorial Kekulé, aclaro que el prisma no endereza el ojo en caso de estrabismo (como puede parecer en la parte final del video anterior), sino que “tuerce la luz” para que la imagen caiga en la fóvea del ojo desviado. Aquí un esquema:

prisma en estrabismo

Efecto de un prisma en la corrección de la visión doble en caso de desviación ocular.

En este ejemplo el ojo izquierdo está desviado hacia adentro (endotropia) por lo que la imagen del objeto observado cae fuera del punto de fijación foveal y se produce doble imagen. Si se coloca un prisma, sea convencional o fresneliano, la refracción del prisma desvía la imagen para que se centre en la fóvea y desaparezca la diplopía. Recordad que un prisma desvía el rayo de luz hacia su base.

“Ceterum censeo Podemus esse delenda”

 

Antonio Valsalva, el inventor del pujo

En esta época tan amante de estadísticas intrascendentes vale la pena recordar efemérides como ésta: los 350 años del nacimiento de Antonio Maria Valsalva, cumplidos en junio de este 2016. Los especialistas de ORL, en especial los otólogos, deben llevarle flores el día del padre a tan insigne médico y anatomista boloñés. Sin embargo, actualmente quizás sea más prodigado en el gremio cardiológico.

El nombre del Valsalva está inmortalizado en la “maniobra de Valsalva”, un ejercicio tan cotidiano que lo aplicamos al mear, peer, defecar, toser o destaparnos los oídos. La maniobra consiste en una espiración forzada contra una vía aérea ocluida, o dicho más sencillo, pujar.

Antonio Pini, alias Valsalva

Valsalva

Antonio Maria Valsalva (1666-1723), retrato de la galería de profesores de la Universidad de Bolonia.

Nació Antonio Maria en Imola, cerca de Bolonia, el 17 de junio de 1666 y falleció por un AVC a los 56 años, el 2 de febrero de 1723 en Bolonia. El apellido de la familia era Pini, pero su padre Pompeo, joyero acomodado, incorporó el topónimo de una posesión familiar de Valsalva.

Se formó en la Universidad de Bolonia, auténtico olimpo de la Medicina de los siglos XVII y XVIII. Considérese que Valsalva fue discípulo de Malpighi, profesor de Morgagni y sucesor de cátedra de Arancio, ahí es na. Si visitáis la sede histórica de la Facultad de Medicina de Bolonia veréis una galería de retratos de sus profesores que es un compendio de la eponimia anatómica.

Sabemos su historia clínica gracias a su amigo y padawan Morgagni, quien presenció en directo un ataque isquémico transitorio en su maestro, manifestado por disartria de pocas horas. Ambos, paciente-profesor y médico-alumno, disertaron conjuntamente sobre qué territorio vascular estaba afectado. También sabemos que Valsalva padeció anosmia, cosa irónica en un investigador de ORL, y que dos años después de su AIT sufrió un ictus masivo que lo dejó en el sitio.

El oído de Valsalva

Su obra más famosa fue De Aure Humana Tractatus, texto fundacional de la anatomía del aparato auditivo. Allí Valsalva da una visión moderna de su estructura y función, incluyendo la división en oído externo, medio e interno. De hecho, los seis capítulos del tratado están divididos en dos para cada división del oído, uno para anatomía y otro para fisiología.

portada valsalva

Portada de las obras de Valsalva editadas póstumamente por su sucesor Morgagni en 1741 (izquierda), que incluye  “De Aure Humana Tractatus”, cuya portada vemos a la derecha.

Describe allí el papel de la cadena de osículos en la audición, el fluido del oído interno, las celdas mastoideas y la función de la trompa de Eustaquio en la igualación de presiones aéreas entre nasofaringe y oído medio. Aquí es donde demostró el efecto sobre el tímpano de sonarse con la nariz tapada, la famosa maniobra que detallaremos más adelante.

texto valsalva

En el capítulo V del tratado Valsalva describe la comunicación aérea entre oído medio y nasofaringe y las implicaciones otológicas de su maniobra

de aure humana

Una de las hermosas ilustraciones originales del “De Aure Humana Tractatus”.

Nota: fue Valsalva quien bautizó la tuba auditiva como tuba eustachiana, en honor a Bartolomeo Eustachio (1513-1574) quien ya había descrito detalladamente el órgano. La inmensa mayoría de los epónimos en Medicina y otras ciencias son puestos a posteriori por autores subsiguientes y no por el propio descubridor/inventor. Ese es el modo lógico, ético, bonito y deseable de tener un epónimo: como un homenaje en reconocimiento de la labor realizada. Por el contrario, que un autor se auto atribuya el epónimo es una muestra de auténtico egocentrismo y vanidad. La cosa es pasable cuando un inventor pone su nombre a una máquina o procedimiento, pero no es de recibo cuando es un descubrimiento, sea de una estructura anatómica, una biomolécula, un microrganismo, signo o enfermedad. Un ejemplo reciente que me escuece en el dartos: el oftalmólogo Harminder Dua describió un plano de clivaje en el estroma corneal profundo, justo sobre la membrana de Descemet; pudo llamar a esa capa simplemente pre-Descemet, pero no, con sus dos pelotas y el turbante lo publicó en el Ophthalmology como capa de Dua. Se habría terminado llamando así seguramente, pero apropiarse para sí de una estructura anatómica (o “artefacto”, en este caso) revela una vanidad exasperante.

Otras contribuciones de Valsalva

El segundo epónimo más conocido es el de los senos de Valsalva, unas dilataciones bulbosas en el nacimiento de la aorta ascendente, en relación con las valvas de la válvula aórtica y punto de nacimiento de las arterias coronarias.

Las tenias de Valsalva son esas tres cintas longitudinales que recorren todo el colon (en el recto son dos). Volviendo al oído, la apertura del receso epitimpánico mastoideo se llama antro de Valsalva y también llevan su nombre los tres ligamentos que sujetan la oreja al hueso temporal y un musculillo del trago.

En el campo clínico, Antonio Maria describió cómo la hemiplejía era contralateral al lado del traumatismo craneoencefálico, comentó la otosclerosis y abogó por un cambio de paradigma más humanitario en el tratamiento psiquiátrico. Reportó la disfagia secundaria a fractura o luxación del hueso hioides, conocida como diafagia valsalviana.

“La Maniobra”

Como dijimos, Valsalva comentó la utilidad de pujar con la nariz tapada para comprobar la permeabilidad tubárica, igualar presiones y también para detectar perforaciones timpánicas. Obviamente lo de pujar no es idea de Antoñito, lo hemos hecho siempre los mamíferos, pues desde el mismo parto hasta las emunciones fecales o soplarse los mocos, todo lleva un Valsalva por medio. Las implicaciones fisiológicas de la maniobra tienen largo alcance.

La maniobra de Valsalva tiene dos componentes: un aumento de presión tóraco-abdominal y una vía aérea cerrada. El aumento de presión corre a cargo de los músculos espiratorios: rectos abdominales, oblicuos mayor y menor del abdomen e intercostales internos. Su contracción presiona el contenido abdominal, desplaza el diafragma hacia arriba y transmite la presión a los pulmones para expulsar el aire.

La vía aérea puede ocluirse en dos niveles: en la glotis, por cierre de las cuerdas vocales, o por arriba de la glotis, mediante boca y nariz cerradas. Las implicaciones en cada caso difieren, pues en el cierre glótico no se afecta la presión tubárico-timpánica.

Lo más importante es el efecto de ese aumento de presión tóraco-abdominal en el sistema cardiovascular. Estos fenómenos se han dividido en cuatro fases:

  • (I) Inicio: el súbito aumento de presión en el tórax eleva brevemente la tensión arterial por compresión aórtica.
  • (II) Continuación: la presión intratorácica mantenida reduce el retorno venoso a través de las venas cavas y aumenta la presión venosa periférica. Al haber menor retorno sanguíneo la tensión arterial va reduciendo progresivamente y ocurre una taquicardia refleja leve.
  • (III) Relajación: el brusco cese de la presión torácica provoca una entrada brusca de sangre en el lecho vascular pulmonar acompañado de un pico de descenso en la presión arterial.
  • (IV) Recuperación: el retorno de la sangre venosa retenida en periferia eleva notoriamente la tensión arterial, que se normaliza en minutos. En esta fase hay un aumento del tono vagal.
fisiología valsalva

Cambios fisiológicos inducidos por la maniobra de Valsalva. El aumento de presión dentro del tronco se transmite hacia la periferia en forma de aumento de presión venosa cefálica y presión intracraneal, protrusión de hernias y dilataciones venosas. Los cambios cardiovasculares se dividen en cuatro fases, según se muestra.

Importancia cardiológica: desde que hay a mano ecocardiogramas ya muchos detalles de la rica y exquisita semiología cardiovascular, incluidos los relativos al efecto del Valsalva, han perdido relevancia, pero la maniobra modifica diversos ruidos cardíacos: en la fase II se reducen los soplos sistólicos aórtico o pulmonar y se apagan 3º y 4º ruidos; en la fase III aumentan los soplos de cavidades derechas y en IV aumentan diversos tipos de soplos por el aumento del gasto.

Lo más útil e importante es que un Valsalva puede, a través de su efecto vagal, detener una taquicardia supraventricular. Un buen pujido frena el ritmo de un corazón desbocado (se entiende, empero, el enfado de un paciente arrítmico al que su médico le dijo que se fuera a cagar).

Importancia extra-cardiológica: la maniobra es extensamente empleada en la exploración clínica de diversas áreas. La hiperpresión abdominal favorece la salida de cosas por los agujeros; por ello es útil en la exploración de hernias abdominales, incontinencia, colpoceles u otros prolapsos pélvicos. El aumento de presión venosa periférica ingurgita lesiones vasculares como varices, malformaciones vasculares o angiomas cavernosos, además de hemorroides y varicoceles.

En oftalmología –barro para casa– esta maniobra pone en evidencia varices orbitarias y comunicaciones anómalas entre órbita y senos paranasales. La presión venosa yugular se transmite hasta la órbita y el ojo, y eventualmente puede reventar delicados capilares retinianos. El resultado es una hemorragia macular o subhialoidea, a veces bilateral.

El peligro de la maniobra de Valsalva que ejercemos a diario en el lavabo es que puede, en desgraciados casos, desencadenar una circunstancia fatal. Puede inducir un síncope vagal en un defecador con delicado sistema cardiovascular, o puede contribuir a la rotura de una malformación arteriovenosa o de un aneurisma cerebral, bien por la hiperpresión venosa de la fase II o por el pico tensional de la fase IV. Más de uno –incluyendo a un profesor mío de la Facultad– ha sido encontrado fiambre sentado en la taza, víctima de una probable muerte por Valsalva.

Quizás las dos semiologías más complejas y apasionantes son la cardiovascular y la neurológica. Recuerdo los dos buenos libros con los que estudié la cardíaca: “Semiología y orientación diagnóstica de las enfermedades cardiovasculares” de Caíno-Sánchez y la inmejorable “Exploración clínica del corazón” de Pedro Zarco (1929-2003).

“Ceterum censeo Podemus esse delenda”