Equilibrio ácido-base para cocineros

No suelo publicar tan seguido posts sobre ciencia y cocina (ya lo fue el anterior) y, de hecho, el tema de equilibrio ácido-base ni lo tenía contemplado, pero lo considero necesario tras ver un chunguérrimo programa de TV3 donde un cocinero facineroso rebuznaba sin el más mínimo pudor sobre la «dieta alcalina» y osaba replicar, con la única base de su ignorancia fanática, al reconocido profesional de la nutrición Aitor Sánchez (@Midietacojea). El ridículo «debate» fue una ofensa a la dialéctica, a las buenas maneras, a la fisiología y a la gastronomía. El digno Aitor supo soportar con integridad las coces del equino.

El burdégano en cuestión se llama Richard Glezmar y regenta un chiringo en Barcelona llamado Alkaline, nombre cosmopaleto que da indicio de lo que se cocina adentro. Por esas cosas que desprestigian a nuestras universidades, el Ríchal recibió el premio del Centre d’Iniciatives Emprenedores Universitàries (CIEU) de la UAB al más emprendedor. No dudo que el tío sea un innovador, pues hasta quiere inventarse el funcionamiento del cuerpo humano.

Quede claro de antemano que la llamada «dieta alcalina», tal como la plantean los gurús de dominical, es una soberana

B O
B A
D A

y carece de evidencia científica sólida tanto como de base teórica sostenible. Comentemos lo más elemental del metabolismo de ácidos y álcalis, a ver si el Ríchal se entera de algo y deja de dar penita.

¿Qué es el pH?

Primero, ¿qué es un ácido? Por el gusto sabemos claramente qué es un ácido; las moléculas que activan esa sensación gustativa tienen una característica química común, al disolverse en agua dejan ir un átomo de hidrógeno ionizado, tal que así:

AH → A + H+

donde A es el radical del ácido y H+ es el ion de hidrógeno o hidrogenión —en realidad un protón suelto—. Todos los ácidos liberan hidrogeniones y es lo que define su cualidad de ácido. Los hidrogeniones disueltos se asocian a moléculas de agua y forman iones hidronio H3O+.

Segundo, ¿qué es un álcali o base? En este caso no nos ayuda mucho el sentido del gusto, y mejor no intentarlo, porque la mayoría de las bases son altamente corrosivas y tienen escaso uso alimentario. La firma química de los álcalis es el radical oxidrilo, OH y la disociación se produce así:

BOH → B+ + OH

donde B es el radical de la base, comúnmente llamada hidróxido. Aunque estos hidróxidos son moléculas inorgánicas, la parejita OH se encuentra en alcoholes y otros compuestos orgánicos, pero allí se comporta diferente.

Es fácil observar que si se combina un hidrogenión con un oxidrilo se forma agua: H+ + OH → H2O. Por ello los ácidos y los álcalis se neutralizan entre sí.

El pH o potencial de hidrogenión es la escala que mide el grado de acidez de una sustancia o medio. Depende directamente de la concentración de H+ y va de 0 a 14. Se considera neutro un pH de 7; por arriba de 7 es un medio alcalino y por debajo es un ácido. El pH se mide con aparatos llamados potenciómetro o pH-metro («peachímetro»), o bien con tiritas de papel reactivas que dan una medición aproximada.

El agua pura y limpia tiene pH de 7. El zumo de limón, la cocacola y el vinagre oscilan entre 2,5 y 3. El agua jabonosa está por 8 o 9 —de hecho, el sabor de las sustancias alcalinas se describe como «jabonoso»—. Todo lo explicado hasta aquí es a nivel de cole, lo sé, pero quería que al Ríchal le quedara todo clarito.

Ácidos y bases en cocina

Utilizar inteligentemente el pH permite modificar cocciones y reacciones frecuentes en los alimentos.

Los ácidos más comunes en la comida son el acético, el láctico, el cítrico, el málico, el oxálico, el tartárico, el ascórbico y, bueno, hay cientos más, incluyendo los ácidos grasos que son capítulo aparte.

Todos los fermentados generan ácidos orgánicos. Los ácidos coagulan las proteínas, por eso cuecen el ceviche, cortan la leche y estabilizan las claras montadas. Refuerzan las celulosas y retardan el ablandamiento de los vegetales fibrosos y legumbres, aunque favorecen la degradación de los almidones y, por eso, reducen el espesor de las salsas ligadas con ellos. Degradan también la clorofila y ésta pasa de verde a gris. Evitan el pardeamiento polifenólico de frutas y verduras cortadas y también enlentecen la reacción de Maillard. Los ácidos viran a rojo los antocianósidos vegetales (como los del arándano o la lombarda).

La mayoría de lo que comemos tiene pH por debajo de 7, para que te enteres, Richita. Los álcalis son mucho menos prodigados en cocina, casi se limitan al bicarbonato de sodio (NaHCO3) y a la nixtamalización, aunque conviene saber que la clara de huevo también es alcalina. Pero el bicarbonato no tiene radical OH, entonces ¿cómo es alcalino? En realidad el bicarbonato proviene del ácido carbónico, que es un ácido débil. Su propiedad alcalina se debe no a generar oxidrilos sino a secuestrar hidrogeniones: H+ + HCO3 → H2CO3, y este ácido se evapora fácilmente como CO2, según veremos más adelante.

Muchos efectos de las bases son los opuestos a los antes descritos para los ácidos, así, aceleran la reacción de Maillard (por ejemplo, los pretzels se bañan en solución alcalina antes del horneado y así quedan muy oscuros, o el dulce de leche lleva bicarbonato para que adquiera más rápido su color caramelo). Ablandan las celulosas, por lo que la fibra vegetal y las legumbres se cuecen antes. Mantienen el vivo verde de la clorofila. Viran a morado-azul los antocianósidos. Los hidróxidos degradan las proteínas, de modo que un filete se vuelve pastufa si se le baña con sosa.

sofrito_bicarbonato

Alcalinización de un sofrito: en A se muestra el inicio de un sofrito de cebolla. Si se añade una punta de bicarbonato de sodio se observa un inmediato cambio de color a amarillo-verdoso por al aumento del pH y, al cabo de unos minutos, es apreciable el ablandamiento de la fibra (B). La alcalinización acelera la reacción de Maillard y por ello se alcanza antes ese punto oscuro que los cursis llaman «cebolla caramelizada» (C).

¿Qué son tampones o buffers?

Dirá Ríchal que tampón es el cilindro de celulosa empleado para absorber la exudación endometrial —usará otras palabras, claro—. Pero en química se llama solución amortiguadora, tampón o buffer a aquella que tiene capacidad para equilibrar su pH cuando se le añade más ácido o más álcali —como su nombre indica, amortigua el cambio del pH—. Es importante este concepto porque los seres vivos son un saco de varias soluciones tamponadoras, según veremos, y pueden defenderse de los cambios de acidez sin necesidad de dietas esotéricas.

Las soluciones amortiguadoras consisten en la disolución de un ácido débil y su base conjugada, normalmente en forma de una sal. El ejemplo culinario más obvio es el buffer de citrato (Citras®) empleado en recetas de esferificación. Cuando se quiere esferificar un preparado muy ácido es necesario amortiguarlo para que el alginato y el calcio puedan reaccionar. El tampón es una solución en equilibrio de ácido cítrico y citrato de sodio. El ácido cítrico (C6H7O7H) está parcialmente disociado y su reacción de disociación es bidireccional:

C6H7O7H  ↔  C6H7O7 + H+

De modo que si se añade algún ácido al sistema (más H+) la reacción se desplaza a la izquierda para amortiguar el exceso de hidrogeniones. En cambio, si se añade una base (que elimina hidrogeniones) la reacción se desplaza a la derecha. Así el pH se mantiene dentro de unos límites apropiados.

Los tampones del cuerpo humano

Si de lo dicho hasta ahora dudo que el Ríchal tenga idea sólida, sobre la fisiología de amortiguación ácido-base sí que mostró una primitiva ignorancia en su aparición televisiva. Cada compartimiento del organismo tiene un pH óptimo para su funcionamiento. Por ejemplo, el estómago está a un pH de 1-2 gracias al HCl que segrega; cuando ocurre aclorhidria y sube el pH estomacal aparecen trastornos digestivos. El pH de la vagina ronda los 4,5 y su alcalinización favorece el crecimiento de Candida, Trichomonas y demás lindezas. El pH interno de las células es ligerísimamente ácido, mientras el de la sangre es levemente alcalino.

En el mantenimiento de estos diferentes puntos de acidez participan varios sistemas amortiguadores:

  • Tampón bicarbonato: el CO2 producto de la respiración celular se disuelve en el agua corporal en forma de bicarbonato, viaja de tal guisa en la sangre y es eliminado en los capilares alveolares durante la respiración pulmonar. El sistema CO2/H2CO3/HCO3 actúa como el principal buffer fisiológico y el de respuesta más rápida.
  • Tampón fosfato: el ácido fosfórico (H3PO4) se disuelve como iones H2PO4 y HPO4–2. Estos fosfatos de los líquidos corporales forman el segundo tampón en importancia (aunque algunos charcuteros alaben sus productos sin fosfatos). Tiene una gran reserva, pues los fosfatos disueltos están en equilibrio con el fosfato óseo (la hidroxiapatita de los huesos se forma por cristalización de fosfatos de calcio); considerando los 15-17 kg de hueso de un adulto, hay fosfato para aburrir.
  • Las proteínas: todas las proteínas tienen cadenas con múltiples grupos amino (—NH2 / —NH3+) y grupos carboxilo (—COOH / —COO). Según el pH del medio estos grupos pueden captar o ceder iones H+ y, por tanto, amortiguar un exceso o reducción de acidez del sistema.
tampones

Los principales amortiguadores inorgánicos de los líquidos corporales son el bicarbonato y el fosfato. El primero es el principal y el más rápido; depende del metabolismo celular y se controla a través de los pulmones y los riñones. El tampón fosfato es de adaptación más lenta y su reservorio está en el mineral óseo —sensible a hormonas como calcitonina, paratohormona y vitamina D—.

El pH sanguíneo es sagrado

Si hay un valor con un margen estrechísimo de normalidad ese es el del pH de la sangre arterial, que está estrictamente regulado entre 7,35 y 7,45. El pH de la sangre venosa es algo más ácido por la cantidad de CO2 disuelto que contiene.

El control de tan estrecho rango de pH se debe por una parte a los tampones antes comentados y, por otra parte, a dos órganos que viven para ello: los riñones y los pulmones, que no sirven solo para mear o echarle el aliento en la cara al prójimo.

El riñón es una planta de depuración en toda regla que filtra los desechos circulantes y regula los niveles de sales minerales, agua y acidez. Los pulmones son capaces de regular la acidez sanguínea aumentando o reduciendo la frecuencia respiratoria. Si se respira rápido se «lava» CO2 y la sangre se alcaliniza, mientras que la respiración lenta retiene CO2 y ello acidifica la sangre.

Alcalosis y acidosis

Cuando el pH arterial se sale del rango normal sobrevienen problemas importantes que afectan a todo el organismo: acidosis si baja de 7,35 y alcalosis si supera 7,45. A su vez estos trastornos se clasifican según su origen metabólico o respiratorio.

  • Alcalosis respiratoria: el ejemplo clásico es la hiperventilación, donde la respiración acelerada elimina demasiado CO2 sanguíneo. La hiperventilación nerviosa se caracteriza por hormigueos en manos y boca, «nudo en la garganta», mareo, puede haber espasmos musculares y hasta soponcio.
  • Alcalosis metabólica: ocurre si se eliminan en exceso ácidos del cuerpo. Su causa más frecuente es la vomitona; unos cuantos vómitos seguidos expulsan una cantidad significativa de HCl e inducen alcalinización de la sangre. Se acompaña de pérdida de potasio y causa un desfallecimiento general que conoce todo buen borrachuzo tras una farra emética.
  • Acidosis respiratoria: cuando el intercambio gaseoso pulmonar falla, sea por mala ventilación o defectos en el tejido pulmonar, se retiene CO2 en la sangre (hipercapnia) y baja la saturación arterial de O2.
  • Acidosis metabólica: puede aparecer por exceso de producción de ácidos, como en la cetoacidosis diabética o la acidosis láctica, o por mala eliminación renal de los ácidos producidos por el metabolismo.

El organismo es tan sabio que logra compensar una de estas alteraciones induciéndose la opuesta. Por ejemplo, una acidosis metabólica se intenta compensar mediante una alcalosis respiratoria: un paciente en coma diabético presenta una respiración profunda y exagerada (respiración de Kussmaul) que intenta alcalinizar la sangre mediante hiperventilación.

El viejo truco de respirar en una bolsa para aliviar los síntomas de la hiperventilación funciona mediante elevación del CO2 en el aire inspirado y reducción en la eliminación pulmonar del mismo.

bannerpresentaciones

La farsante dieta alcalina

Por fin llegamos a la bobada de turno. Lo primero que llama la atención cuando se miran las listas de alimentos del dogma alcalino es que incluye como «alimentos alcalinos» frutas de bajísimo pH. Eso se debe a que la clasificación no se basa en el pH propio del alimento sino en el nivel de acidez de las cenizas que deja cuando se quema.

Para medir las calorías de un alimento se hace una medición del calor emitido por el mismo mientras se consume en llamas (calorimetría). El residuo de la combustión es, por supuesto, un montón de cenizas. Hay cenizas ácidas y básicas, pero la mayoría de las cenizas son básicas, tanto así que el término álcali proviene del árabe para designar las cenizas con que se preparaba sosa. Pero, mire usted, los alimentos no se consumen hasta cenizas dentro del cuerpo, nadie caga en un cenicero. No puede extrapolarse del todo la combustión en un calorímetro al metabolismo de ese mismo alimento en el ser vivo.

La primera proposición de esta dieta tuvo la intención de reducir la descalcificación ósea que teóricamente podría inducir una dieta excesivamente ácida. No se ha demostrado que el pH de la dieta afecte significativamente la descalcificación ni que la dieta alcalina proteja de ella, no hay evidencia de que una dieta con cenizas alcalinas modifique en nada el pH sanguíneo ni de otro compartimiento corpóreo. Pero a partir de este mito y del de las cenizas se creó el tinglado de la dieta alcalina que, como tantas otras teorías dietéticas estrambóticas, ha anidado fuera de la comunidad científica gracias a gurús de pacotilla, healthy people obsesionada y algún cocinero sin criterio.

Estos gurús han desbarrado sobre su efecto protector contra el cáncer, argumentando que los tumores son ácidos y la dieta alcalina los neutraliza. Absurdo, absurdo. La acidez del entorno tumoral es resultado de un metabolismo anaerobio debido a un crecimiento más rápido que la capacidad de su vascularización. Es tomar el efecto por la causa.

Hay que decir, sin embargo, que dentro de las dietas mitológicas la alcalina no es de las más desequilibradas, pues se basa en un mayor consumo de vegetales y menor de carnes, cosa que propugnan la mayoría de las dietas sensatas. El problema es el dogma absurdo que defiende, la ausencia de comprobación de las bondades que ofrece y el tinglado de productos, libros, webs y «especialistas» que se benefician económicamente de ello.

Crea tu propia dieta alternativa

Voy a inventarme una dieta milagro aquí en directo, ante vuestros ojos. Partiré del hecho de que una dieta saludable abunda en verduras, alimentos integrales, fibra y carbohidratos de absorción lenta. La fibra de estos alimentos no la absorbe el intestino sino que es degradada por la microbiota intestinal y genera gases. Por tanto, mientras más fibra más gases, mientras más vegetales e integrales más gases, mientras más fibra y vegetales más sano y, conclusión lógica de este silogismo, mientras más gases más sana será la dieta.

Ahora le pondré un nombre bonito, quizás Fart-Friendly Diet. Venderé que comer mucha verdura, frutas, tofu y legumbres es sano, quién lo duda, pero su sanidad radica en el volumen de pedos que genera. Si quieres vivir sano tienes que peerte, mientras más mejor. El siguiente paso es exagerar ello fuera de lo sensato: hay que incluir todo lo que pueda aumentar el flujo gaseoso intestinal, sea sano o no, por ello indico que en mi fart-friendly diet es obligado consumir bebidas carbonatadas en grandes cantidades, cerveza, mucha lactosa y leguminosas a diario.

Para redondear el negocio, además de publicar un par de libros al año, de poner un sitio web y una consulta de nutrición (qué más da si no tengo preparación, soy médico y eso da empaque), iniciaré una línea de suplementos nutricionales flatógenos con extractos de quitina de crustáceos y setas, celulosa, cartón picado, césped, a lo mejor fibra textil reciclada…

La fart-friendly diet será sanísima porque sus seguidores así lo creerán ciegamente y condenarán la bazofia con que se alimentan los demás, sabrán que la dieta funciona porque se peerán constantemente, se les caerán los pedos por la calle. No importa que vivan distendidos, con cólicos y diarrea mientras crean que están ganando la vida eterna.

Cuando mi dieta sea famosa y abundante en prosélitos quizás el Ríchal pase de bando y cambie su Alkaline por el restaurante Cuesking House o algo semejante.

«Ceterum censeo Podemus esse delenda»

Anuncios

Las leyes de los gases para cocineros

Eso de que «la cocina es un laboratorio» es una frase demasiado repetida, pero siempre insisto en que los profesionales de la cocina no llegan a ver hasta qué punto es cierto que trabajan dentro de un laboratorio. La química y la física son la auténtica base del oficio de cocinar, pero de cocinar normalito y del día a día, no solo de esa etiqueta mercadotécnica de «cocina molecular» que tanto usaron los chefs de vanguardia en la década de los 2000 y que tanto sesgó la relación ciencia-gastronomía.

Las propiedades físicas de los gases tienen un insospechado papel dentro de las cocinas y de eso hablaremos hoy. Pero ¿es que cocinamos con gases? Sí, se usan líquidos a diferentes temperaturas que mantienen equilibrio con su fase gaseosa, se usan recipientes herméticos, se usan gasificantes, se usan refrigeradores, sifones, máquinas de vacío, nitrógeno líquido, etc.

Son tres las propiedades más importantes de un gas: volumen, presión y temperatura. La relación entre éstas se expresa como las leyes de los gases.

A mayor presión, menor volumen

Primera ley, conocida como ley de Boyle-Mariotte, fue enunciada por Robert Boyle y Edme Mariotte, cada uno por su cuenta, en la segunda mitad de s.XVII. Dice que la presión y el volumen de un gas son inversamente proporcionales, es decir, que si aplica una mayor presión a un gas su volumen disminuye y si baja la presión el volumen aumenta. O dicho en fórmula:

P1V1 = P2V2

Donde el subíndice 1 indica las condiciones iniciales y el subíndice 2 las finales. Esto es fácil de ver si tiene una jeringa con aire y la punta ocluida: si se empuja el émbolo se reduce el volumen de aire dentro de la jeringa y aumenta la presión interna. Las botellas de bebidas gaseosas no muestran burbujas cuando están cerradas, pero al aflojar la tapa y escuchar el fffffshhhhhh se forman de inmediato muchas burbujas finas; ello se debe a la reducción súbita de la presión dentro de la botella que permite la expansión del gas disuelto en el líquido.

leyes_gases1

La ley de Boyle indica que el volumen de un gas se reduce en relación con la presión que se ejerce sobre él, como cuando se usa un pistón (A). Sin embargo, la presión puede elevarse manteniendo el volumen constante (B) o aumentándolo (C) si se introduce más gas en el sistema.

[A Edme Mariotte se le atribuye el descubrimiento de la mancha ciega de la visión, es decir, la proyección en el campo visual de la cabeza del nervio óptico, región del fondo de ojo que carece de fotorreceptores y, por tanto, de visión.]

A mayor temperatura, mayor volumen

Se conoce como ley de Charles y fue publicada a principios del s.XIX. En este caso la relación entre volumen y temperatura es directamente proporcional, de modo que al calentar un gas éste se expande y al enfriarlo se contrae, lo que en fórmula se expresa:

V1/T1 = V2/T2

o bien

V1T2 = V2T1

Si inflamos un globo y lo metemos en el congelador, al cabo de un rato veremos que el globo aparece menos inflado por la contracción del volumen debido a la baja temperatura.

leyes_gases2

La ley de Charles indica la dilatación de un gas en función de la temperatura aplicada. Este fenómeno ocurre en las masas levadas sometidas a cocción.

Ley combinada de los gases

La ley de Boyle considera cambios de presión a una temperatura constante, mientras la ley de Charles alude a cambios de temperatura a una presión constante. Pero en la vida real, y por supuesto en las cocinas, ocurren simultáneamente cambios en la temperatura, la presión y el volumen de los gases. Así, las dos leyes anteriores pueden unirse y expresarse mediante una fórmula combinada:

VPT2 = VPT1

De aquí en adelante los ejemplos culinarios que mostraremos se basarán especialmente en la ley combinada.

Olla express y Gastrovac

Quizás el ejemplo más obvio de la aplicación de las leyes de los gases en cocina sea la olla a presión o express. El agua ebulle a 100 ºC y esa es la máxima temperatura que alcanza el vapor de agua… a la presión atmosférica a nivel del mar. El único modo de hacer que una cocción en agua supere los 100 ºC y, por tanto, cueza más rápido el producto es aumentar la presión dentro del compartimiento. La olla a presión —lo mismo que un autoclave de esterilización— está sellado herméticamente, la presión aumenta al acumularse vapor en su interior y alcanza entre 120 y 130 ºC. La válvula de seguridad evita que la presión exceda un límite peligroso.

Para abrir la olla se debe esperar a que bajen la temperatura y la presión en su interior. Si se va con prisa, colocar la olla bajo el grifo de agua fría acelera la bajada de presión. Los accidentes con la olla express suelen venir por un cierre defectuoso o por abrirla antes de tiempo.

La olla Gastrovac es el opuesto a la express. Es un invento de la Universidad Politécnica de Valencia que ha tenido poco recorrido fuera de la alta gastronomía. Se trata de un recipiente sometido a baja presión en su interior, por lo que se logra la ebullición del agua a temperaturas muy bajas, es decir, es un sistema de cocción a baja temperatura. Simula lo que ocurre cuando se intenta cocinar en las cumbres de los Andes o del Himalaya, donde el agua jamás llegará a 100 ºC y los tiempos de cocción se prolongan sensiblemente. Otro cacharro de alta cocina de funcionamiento similar es el Rotaval, un destilador con bomba de vacío que logra destilar a temperatura inferiores.

Panes y bizcochos

Sin el concurso de las leyes de los gases no disfrutaríamos de esponjosas masas horneadas. Las burbujas de gas atrapadas en la masa, generadas bien por fermentación, bien por gasificantes químicos (impulsor) o bien por batido, se dilatan por efecto de la temperatura de cocción, ejercen presión desde dentro de la masa y la expanden: así crecen los cakes y los panes en el horno. Cuando la cocción solidifica la masa por coagulación/gelatinización de sus componentes se mantiene la estructura alveolada de las burbujas gaseosas.

La pâte à choux o masa de lionesas con la que se hacen los profiteroles es un auténtico milagro donde se junta el manejo de las propiedades viscoelásticas y de los gases para obtener un bollo aéreo perfecto que mil científicos no habrían logrado, ¡viva el empirismo culinario! La masa de profiteroles no lleva impulsor ni fermentación, solamente algo de aire por batido y, sobre todo, mucha agua. La trasformación en vapor de esta agua durante la cocción expande las porciones de masa, la cual tiene una viscosidad y elasticidad suficientes para resistir la presión del vapor en su interior y que se formen unos alveolos grandes. El resultado es un bollito de corteza fina y dorada y casi completamente vacío, perfecto para rellenarlo con la crema pastelera más calórica que la gula nos aconseje.

Otro caso de asombroso equilibrismo es el de los soufflés y su etérea textura, producto del empuje de las burbujas de aire en las claras montadas. Pero en este caso las paredes de las burbujas son muy delicadas y cualquier cambio brusco de temperatura o presión hará colapsar el soufflé. La mezcla se extruye del ramequín conservando su forma cilíndrica, eso sí, si el calor tiene una distribución uniforme dentro del horno; si la temperatura es desigual o si la masa se adhiere a un segmento de un molde mal engrasado, la extrusión es asimétrica y en vez de un cilindro como gorra de gendarme se obtiene una boina de ertxaina.

Los botes de conservas

El procedimiento clásico de embotar conservas consiste en verter la mezcla caliente en los envases calientes, o bien cocerlos dentro de los envases con la tapa no totalmente cerrada y posteriormente cerrarlos herméticamente aún en caliente. Cuando el bote se enfría se contrae la pequeña bolsa de aire que quedaba dentro y se genera un vacío relativo.

Cocina al vacío

Lo de meter comida en sobres plásticos, cerrarlos al vacío y meterlos en baños termostatizados es ya una técnica habitual en cocinas grandes y pequeñas. Las empacadoras de vacío extraen el aire contenido dentro de la bolsa plástica y la sellan para crear un compartimiento estanco con una presión interior por debajo de la atmosférica. En los paquetes envasados al vacío el plástico está pegadito al contorno del alimento como una licra al culamen de la Kardashian. Lo que mantiene ese plástico tan pegado es la presión de la atmósfera exterior, es decir, el peso de esa columna de aire de más de 100 km que tenemos sobre nosotros.

El vacío dentro de bolsa evita que haya compartimientos de aire que la hagan flotar dentro del baño y causen una cocción desigual; además es una herramienta de seguridad microbiológica. Para un buen repaso sobre el tema recomiendo una vieja entrada del blog lamargaritaseagita.com.

bannerpresentaciones

El sifón

Los clásicos sifones de gaseosa se basan en la ley de Boyle-Mariotte: al abrir la espita se produce una descompresión dentro de la botella y el CO2 contenido se expande, empujando el líquido a través del tubo. Los modernos sifones de cocina para espumas trabajan con el mismo principio pero usan ampollas de N2O (óxido nitroso, el famoso «gas hilarante» con efecto anestésico y, además, efecto invernadero). Este gas no es inflamable y el mayor peligro del uso del sifón está en la presión acumulada, por intentar abrirlo indebidamente o cuando se obstruye su salida.

Quien haya cargado un sifón habrá notado que al vaciarse la carga de gas en el sifón tanto éste como la cápsula se enfrían. Eso es debido a una cosita llamada efecto Joule-Thomson, que es, digamos, un derivado de la ley combinada centrado en la relación presión-temperatura. Cuando se somete a presión un gas sus moléculas se compactan, eso aumenta la fricción entre ellas y sube la temperatura. Por el contrario, la reducción de presión reduce la temperatura del sistema. Ello acontece al descomprimir la ampolla de N2O dentro del sifón: hay una busca reducción de presión que enfría el gas.

leyes_gases3

El enfriamiento que se nota en las paredes del sifón cuando se carga con gas se debe a la descompresión del contenido de la cápsula. Es el mismo principio que usan los frigoríficos.

Refrigeradores

Lo explicado anteriormente es la base de los sistemas de enfriamiento de uso cotidiano: neveras, congeladores, abatidores o aire acondicionado. El alma de estos aparatos es el compresor, un motor que comprime y descomprime secuencialmente el gas que circula por los conductos. Existen diversos gases refrigerantes y se siguen investigando otros, pues los que se han usado o bien se meriendan el ozono de la atmósfera o tienen un efecto invernadero del carajo.

Acuérdese usted de James Joule y de William Thomson, alias lord Kelvin, cada vez que saque una cervecita bien fría del frigo.

Nitrógeno líquido

El nitrógeno molecular (N2) ocupa el 78% del aire de la atmósfera inferior, por tanto estamos nadando en nitrógeno y lo respiramos continuamente, no es ningún potingue raro, ni nocivo, ni inflamable, ni «química peligrosa» u otras bobadas que sugieren algunos retrasaditos anti cocina moderna.

El mayor peligro del N2 líquido es que está a −196 ºC y su contacto causa lesiones graves en los tejidos. Cuando me tocaba manipular N2 líquido en el laboratorio me ponía gafas protectoras, guantes aislantes y demás parafernalia. Ahora veo a los cocineros escanciando y manipulando el gélido fluido alegremente, como si fuera ginebra. ¡Hay que tenerle respeto!

El segundo peligro del N2 líquido justifica por sí solo que todo cocinero conozca las leyes de los gases: jamás debe guardarse ni transportarse en un recipiente herméticamente cerrado ni de uso no específico para contenerlo. Los botellones Dewar donde habitualmente se almacena el N2 líquido no tienen tapa de rosca sino un pistón que encaja suavemente en la boca del recipiente y un capuchón que hace de segunda tapa, ninguna hermética, para permitir que se libere controladamente la presión del nitrógeno evaporado.

El peligro surge cuando un inconsciente y/o iletrado quiere «llevarse un poquito de nitrógeno» y no se le ocurre mejor recipiente que un termo vulgar de los de llevar café o un sifón. Y cierra el inadecuado envase a conciencia para que no se le escape el N2. Ese iletrado está transportando una bomba, pues el N2 líquido se transformará en gas y dilatará su volumen hasta cerca de 700 veces. Imagina tú la presión que se acumula dentro del ridículo termo y el terrible estallido en que acaba todo. Estos casos han ocurrido y hay gente que lo ha tenido que lamentar.

Saber estas cositas no solo va bien para cocinar, sino por seguridad, para evitar percances con ollas express, sifones, bombonas de butano, pistolas de pintura de chocolate y demás equipos con altas presiones.

“Ceterum censeo Podemus esse delenda”

Ligando salsas con Ciencia (III): proteínas y grasas

Para finalizar este trío de entradas dedicadas a la viscosidad culinaria hablaremos de lípidos y proteínas, sabrosas moléculas que suelen trabajar en equipo para texturizar una salsa.

Proteínas

Las ligazones proteicas son las más caras en cuanto a coste, pero también dan una calidad al producto final muy superior a los espesantes baratos. Es la diferencia entre una crema pastelera con muchas yemas respecto a una abusiva en maicena, o una glasa de carne ligada por su propia gelatina versus un guisote marujiento engrosado con harina.

Las proteínas afectan la viscosidad por tres mecanismos: coagulación, agente de carga y estabilizante de emulsión (este último lo trataremos más adelante).

Coagulación

El calentamiento o la acidificación del medio hace que las proteínas cambien su conformación y abran sus cadenas: esto es la desnaturalización proteica. Esas cadenas peptídicas desplegadas tienden a “enredarse” entre sí y aumentan la viscosidad del líquido. El peligro de usar ligazones por coagulación es que un exceso de desnaturalización lleva a precipitación de las proteínas, es decir, a un fluido cortado con grumos vomitoides. Todo el que haya hecho crema inglesa sabe que descuidarse en ese rango crítico de 80-85ºC significa la diferencia entre una crema untuosa y unos huevos revueltos flotando en leche.

La yema de huevo es la ligazón coagulativa por excelencia. Mucho menos útil es el huevo entero o la clara, pues son mejores para gelificación que para espesamiento. La sangre de un civet o los corales de marisco actúan de manera similar. Conviene conocer la temperatura de coagulación para cada producto.

Agente de carga

Me refiero a la proteína empleada como agente inerte para atrapamiento de agua y aumento del residuo sólido de un preparado. Aquí destacan los lácteos: leche evaporada, leche en polvo o yogur. La leche en polvo entra en la fórmula de los helados, mientras la leche evaporada es una alternativa a la nata con menos grasa (así la venden, al menos). El yogur aporta untuosidad a salsas frías, pero en calor hay que cuidar su sinéresis; recordemos también que el yogur es un fluido tixotrópico, es decir, reduce su viscosidad con la agitación.

Hay un caso especial y maravilloso de espesamiento proteico “por carga”, es la gelatina, y merece capítulo propio.

Gelatina y demi-glace

La gelatina forma geles más o menos sólidos al enfriar mientras en caliente es totalmente líquida (claro ejemplo de transformación sol-gel), pero cuando se evapora una buena cantidad del agua la gelatina forma, aún en caliente, un fluido viscoso que en cocina se llama demi-glace y que es una de las marcas de calidad de un auténtico chef. Esa salsa oscura, hipersabrosa, brillante y puesta a punto con su cachito de mantequilla de remate, da una golosa adherencia labio-palatal.

La gelatina proviene del colágeno y el colágeno es la principal proteína estructural del tejido conectivo, es decir, del tejido que hace de estructura y sostén al resto de células y órganos del cuerpo. El colágeno alcanza hasta el 25% del contenido proteico de un mamífero y es abundante en dermis, tendones, fascias, aponeurosis, ligamentos, cartílago, hueso o submucosa del tubo digestivo.

De allí que las piezas animales donde abunde el colágeno sean adecuadas para preparar salsas ricas en gelatina: cortes de carne dura y fibrosa como el morcillo, alas de pollo, carcasas, raspas de pescado, etc. El colágeno es el responsable de la textura y pegajosidad de los callos, los pies de cerdo, las cocochas, la tripa de bacalao y similares joyas que aprecia todo sincero yonki del yantar. No en vano la palabra colágeno viene del griego κόλλαγεν, “de donde viene la cola o pegamento”.

colágeno y gelatina

Transformación del colágeno en gelatina y en salsa demi-glace. Al preparar un fondo de carne se extrae el colágeno desmontando sus unidades de tropocolágeno. Si se enfría un fondo bien preparado éste se solidifica por la gelificación del tropocolágeno en forma de gelatina. La reducción prolongada de un fondo da lugar a una salsa espesa y adherente por concentración de la gelatina, conocida como demi-glace. (Clic para ver en tamaño completo)

Las fibras de colágeno están formadas por unidades apiladas y solapadas como los ladrillos de una pared. Tal ladrillo es el tropocolágeno, que a su vez está constituido por tres cadenas proteicas retorcidas en forma de hélice.

La cocción del colágeno hace que se desmonten los bloques de tropocolágeno y también que sus subunidades se desenrosquen. Esto es lo que se obtiene en un fondo de carne tras cocción prolongada –un caldo corto, de preparación breve, solo sirve para sopitas pues no se ha extraído suficiente colágeno­. Al enfriarse el líquido las unidades de tropocolageno intentan entrelazarse pero no ya en la forma ordenada que tenían originalmente, sino como una red irregular a la que llamamos gelatina.

La evaporación de un fondo a menos de la mitad de su volumen original produce una concentración de la gelatina y demás residuo sólido: es la ansiada demi-glace. Nota: cuando un caldo se va a destinar a hacer demi-glace no conviene añadirle sal, pues la reducción de la salsa suele ser suficiente para alcanzar la salinidad justa. La demi-glace puede evaporarse un poco más aún y convertirse en glace, óptima para napar o glasear piezas de carne. Algunos profesionales terminan de espesar la demi-glace mediante un poco de roux o de maicena, pero me reservo mi opinión ante tal acto.

Salsas lipídicas

La primera condición para que una grasa forme parte de una salsa es que esté estabilizada en forma de emulsión, a menos que se desee una salsa cortada como en algunas vinagretas. La emulsión de una grasa en agua requiere del concurso de un agente tensioactivo o surfactante, es decir, de un compuesto que reduzca la tensión superficial entre las fases agua y aceite. Este efecto es precisamente el que hacen los detergentes y que permite el lavado.

Los tensioactivos más frecuentes son fosfolípidos como la famosa lecitina, carbohidratos tipo gomas y proteínas de la fase acuosa. Así se estabilizan las gotas de grasa en la nata gracias a fosfolípidos y a las proteínas lácteas. La mayonesa y la holandesa se estabilizan por la lecitina y las lipoproteínas de la yema.

Lípidos en emulsión

Una emulsión con gotas grandes es menos viscosa que otra con gotas pequeñas, pues esta última tiene más superficie de interfaz agua-aceite. La mayor superficie de rozamiento hace que la salsa con gotas pequeñas sea más viscosa.

La segunda condición para que la grasa emulsionada aumente la viscosidad de la salsa es que el diámetro de gota sea pequeño (según vimos en el post sobre mecánica de fluido para cocineros). Las gotas grandes son menos estables, tienden más a coalescer y tienen menos superficie de roce que cuando las gotas son pequeñas. Es decir, para un mismo volumen de aceite la superficie de rozamiento entre gotas será mayor si las gotas son pequeñas que si son grandes, según la ley del cuadrado-cubo enunciada por Galileo, y a mayor rozamiento entre gotas mayor viscosidad.

Ligazones mixtas

La verdad es que en la mayoría de las preparaciones concurre más de un tipo de sustancia espesante. Así en un pilpil actúa la gelatina del bacalao con la emulsión del aceite; en la crema pastelera las lipoproteínas de la yema y el almidón de maíz; salmorejos y ajoblancos espesan por efecto del pan, la fibra vegetal y el aceite de oliva; en un risotto el almidón del arroz y la mantecatura de parmesano y mantequilla; en la mayoría de los guisos participan la gelatina y la grasa de la carne junto al auxilio de la maicena o la harina; casi todas las cremas y salsas se benefician del añadido de nata o mantequilla para aportarle untuosidad y brillo.

Con esto acabo la serie de artículos de ciencia aplicada en las ligazones, cocina molecular de la buena y no la del postureo. Si aún no habéis leído las partes anteriores, corred ¡malditos! a leerlas de inmediato: Parte 1 y Parte 2.

Ligando salsas con Ciencia (II): carbohidratos

Toda la cocina es cocina molecular, señores. No entiendo la cara de oír blasfemia de algunos profesionales de la gastronomía cuando escuchan jerga científica aplicada al oficio de dar de comer.

En la primera parte de este artículo sobre la ciencia de las ligazones culinarias repasamos los principios generales del manejo de la viscosidad en esos suculentos fluidos llamados salsas y cremas. Hoy veremos ejemplos específicos de los espesantes tipo carbohidrato.

Los polisacáridos son los espesantes más extensamente empleados en alimentación por ser muy eficientes y económicos. Por practicidad los dividiremos en estos grupos: azúcares sencillos, almidones y carbohidratos complejos “especiales”.

Azúcares sencillos

Me refiero a mono y disacáridos, como glucosa, fructosa, sacarosa o maltosa. Habíamos comentado que la mayoría de los espesantes son moléculas largas y ramificadas que atrapan agua, pero las pequeñas moléculas de estos azúcares tienen gran capacidad de fijar agua y de aumentar la viscosidad, como lo demuestran la miel, los almíbares y los jarabes de glucosa o de azúcar invertido. Pero para funcionar tienen que estar en una proporción elevada propia de postres (coulis, jaleas). La miel aporta consistencia a la pegajosa glasa de alitas de pollo o costillas lacadas; otro ejemplo, el espesor de la salsa teriyaki se debe al azúcar añadido y al proveniente del mirin.

Almidón

Es el carbohidrato complejo por excelencia. Está formado por amilosa (polisacárido lineal) y amilopectina (polisacárido ramificado), ambos a partir del encadenamiento de glucosas. El almidón es usado por los vegetales como almacenamiento energético –igual que nosotros acumulamos lorzas– y se encuentra en forma de gránulos de almidón, muy compactos y sin humedad, cuasi-cristalinos. En las harinas los gránulos de almidón están mezclados con otros componentes del grano de origen, por ejemplo fibra alimentaria y proteínas como el gluten. En las féculas y almidones procesados se eliminan esos componentes.

Se acostumbra llamar almidones al producto extraído de granos de cereal (trigo, maíz, arroz) y féculas a los extraídos de tubérculos (patata, yuca, arrurruz –alias kuzu–), pero son términos perfectamente intercambiables. Las propiedades de cada tipo de almidón dependen de su origen: poder espesante, temperatura de gelificación, estabilidad y transparencia del gel…

Para que el almidón sirva como espesante debe hidratarse el gránulo de modo que se desplieguen las cadenas compactadas en su interior. La amilosa y la amilopectina extendidas se solvatan y forman un sol o un gel según las circunstancias.

Aunque el cocinero no sepa de gránulos de amilopectina ni de coloides, sí que aplica técnicas adecuadas para que funcione la ligazón: la primera regla, separar los gránulos, y la segunda regla, aplicar calor y agitación.

Si se añade una cucharada de harina a un litro de líquido y se agita sólo se obtienen grumos, pues la tensión superficial del agua hace de barrera para la dispersión de la harina. Si además el líquido está caliente se gelatiniza la zona superficial de los grumos y cuesta aún más separar los gránulos. Por ello la regla es no añadir directamente el almidón a la salsa, sino primero dispersarlo (que no disolverlo) en una pequeña proporción de agua donde la fuerza de agitación manual venza a la tensión superficial, y que además sea agua fría. Una vez separados los gránulos en suspensión sí se puede añadir al líquido de cocción.

Otra forma de dispersar los gránulos es mezclándolos con grasa. El amasado harina-mantequilla separa los gránulos en la matriz lipídica, de modo que al añadir un líquido caliente el riesgo de grumos se reduce. Esto es la clásica beurre manié o el aún más clásico roux, base de bechamel y veloutés.

Una tercera manera de dispersar los gránulos es espolvoreando la harina sobre el producto a cocinar, como se hace con trozos de carne antes de dorarlos o bien sobre el sofrito (singer en léxico de escuela francesa). Posteriormente, cuando se añade el líquido, esa harina se desprende de la carne y liga el guiso.

efecto_almidon

¿Qué ocurre con el almidón cuando se cuece? El almidón está en forma de gránulos compactos con capas concéntricas como microcebollas. A: los gránulos se dispersan en agua no caliente y comienzan a hidratarse. B: a medida que aumenta la temperatura los gránulos se hinchan por la absorción de agua y a partir de los 60-70ºC se completa su gelatinización y se nota un aumento de la viscopsidad del medio. C: a mayor temperatura los gránulos se rompen y liberan las cadenas de amilosa y amilopectina que forman una red coloidal que aumenta muy significativamente la viscosidad. Con el enfriamiento se estabiliza el coloide y aumenta un poco más la viscosidad del sistema. D: según las condiciones físicas y la estabilidad del gel puede ocurrir retrogradación del almidón y separación de fases (sinéresis).

La segunda fase, calor + agitación, es necesaria para hidratación de los gránulos (gelatinización) y posterior salida del almidón hacia el medio líquido, donde las cadenas se solvatan y aportan viscosidad. Al reducir la temperatura las hebras de polisacárido van formando una red viscosa coloidal (gelificación).

La gelificación del almidón se reduce en medio ácido, en parte porque el exceso de ion H+ interfiere en la formación de puentes de hidrógeno y en parte porque el ácido fragmenta las cadenas hidrocarbonadas.

La retrogradación de almidón ocurre cuando la temperatura y/o humedad bajan del punto óptimo para la estabilidad del gel. Así, cuando se enfría el gel o se evapora su agua las moléculas del almidón tienden a agregarse como pseudo-gránulos de textura más sólida y de tamaño suficiente para precipitar. La retrogradación es la responsable del endurecimiento del pan viejo, de la textura quebradiza desagradable de una patata cocida dejada en la nevera y de la sinéresis y sedimento amorfo en la salsa de un guiso refrigerado.

Carbohidratos complejos especiales

Obviamente éste no es un grupo formal de clasificación química, sino una apelación didáctica donde quiero meter un montón de espesantes-gelificantes de uso frecuente en alimentación como gomas, alginatos y pectinas.

A diferencia de la monótona repetición de glucosa del almidón, la estructura química de estos carbohidratos es muy variable y compleja. Participan diferentes tipos de azúcares y tienen diversos patrones de ramificación.

A este grupo heterogéneo pertenecen casi todos esos “nuevos” texturizantes de la cocina moderna. Aunque son productos naturales provenientes de vegetales y algas son mirados con más recelo por los quimiofóbicos culinarios, quizás porque suelen llevar un número E asignado.

Gomas

Son sustancias resinosas y pegajosas extraídas de tallos leñosos o semillas de algunas plantas. En industria alimentaria, repostería, heladería y cocina se emplean, por ejemplo, goma garrofín, goma guar, goma arábiga, goma tragacanto o konjac. Su alto poder espesante permite usar cantidades pequeñas de estas sustancias para obtener el efecto deseado. Otro tipo de gomas no alimentarias son las extraídas del látex vegetal: caucho y gutapercha, de donde proviene la asimilación habitual de “goma” como producto plástico.

Pectinas

Son polisacáridos presentes en la pared celular vegetal, es decir, participan en la argamasa que ensambla la estructura de las plantas. La manzana y el membrillo son fuentes muy conocidas de pectina; también el ajo es rico en pectinas, de allí el rastro pegajoso que deja en los dedos al cortarlo y su efecto emulsionante cuando se prepara un alioli.

La pectina requiere la adición de ácido al medio para que ocurra entrelazamiento de sus cadenas y se note el efecto gelificante. Es la maniobra típica del chorrito de limón al preparar una mermelada.

Algas

Son numerosos los texturizantes extraídos de diversos tipos de algas, por ejemplo el agar-agar (mejor gelificante que espesante), los alginatos y carragenanos. El alginato requiere presencia de ion Ca+2 para formar enlaces cruzados entre sus cadenas y trabar una red de fibras.

Sintéticos

Hay almidones modificados por tratamientos físicos o fermentación bacteriana, de donde se obtienen productos como las gomas xantana y gelano. También hay pectinas modificadas químicamente para obtener nuevas propiedades, como gelificar sin ácido. A partir de la celulosa vegetal se obtienen derivados como la metilcelulosa.

Esta variedad de texturizantes provenientes de carbohidratos complejos aportan diversas prestaciones: actuar en frío o en calor, formar geles termorreversibles o termorresistentes, resistencia a la congelación o al ácido y aportar diferentes texturas, lo que da al cocinero un repertorio amplio de dónde escoger.

¿Hay carbohidratos animales?

Todos los carbohidratos mencionados y útiles en alimentación provienen de plantas. También los animales contienen carbohidratos complejos aunque no tengan demasiada relevancia en cocina.

Como carbohidrato de almacenamiento está el glucógeno, equivalente animal del almidón y reserva energética para el hígado y el músculo. El glucógeno es una reserva limitada pues la célula animal no sabe concentrarlo en gránulos deshidratados y su acumulación inflaría excesivamente el volumen celular. De hecho el metabolismo erróneo del glucógeno origina un grupo de enfermedades llamado glucogenosis. Por esta limitación de volumen nuestro principal almacén energético es el tejido adiposo.

Como polisacáridos estructurales destaca la quitina que forma el exoesqueleto de crustáceos y otros artrópodos y los glucosaminoglucanos de la matriz extracelular. Entre estos últimos está el famoso ácido hialurónico; los glucosaminoglucanos son abundantes en tejido conectivo, cartílago y hueso. Cuando se prepara un fondo animal se extraen hacia el caldo y en algo contribuyen a su viscosidad, igual que a la textura de pies y oreja de cerdo, callos o crestas de gallo, entre otros manjares de casquería.

La tercera y última entrega de esta serie tratará de salsas con ligazones proteicas y lipídicas.

NOTA TELEVISIVA. A continuación os muestro un perfecto ejemplo de esa cara de espanto que ponen algunos cocineros cuando alguien osa hablar de ciencia en su presencia:

masterchef

Proviene del inicio de la 4ª temporada de Masterchef España. El concursante es ingeniero y comentó que a fin de cuentas la cocina está gobernada por los mismos principios de química y física que usa en su oficio. Nótese el rictus de indignada sorpresa del famoso juez. Posteriormente al concursante se le ocurrió mencionar “hidrocoloide” y el mismo juez le contestó que no le replicara con palabrejas y “alcaloides”.

Quizás la limitada visión del jurado no les permite entender que para quienes estamos formados en ciencias tales “palabrejas” son nuestro modo natural de hablar. Esto queda muy claro en artículos como los de este blog. No es la primera vez que un concursante de formación científica es hostigado por los jueces.

Pocos minutos después apareció otra concursante remedando a Odile Fernández y hablando de “cocina de regeneración celular”, con la que logró curarse dejando las medicinas. Ni un atisbo de crítica ante tal proposición.

Ligando salsas con Ciencia (I)

Entre una salsa rala y otra untuosa se diferencia un plato infame de otro apetecible. Entre una salsa ligada como engrudo y una napante demi-glace se nota la diferencia entre una olla de presidio y un auténtico cocinero de restaurante. Dar la textura apropiada a salsas, cremas y sopas es un capítulo básico de la técnica de cocina: las ligazones.

Encadeno este tema con mi anterior entrada sobre mecánica de fluidos para cocineros pues, como allí se comentaba, el manejo de la viscosidad es elemental cuando se cocina y espesar salsas es esencialmente una cuestión de viscosidad. Ligar una salsa incluye dos conceptos: evitar la separación de fases (“salsa cortada”) y aumentar su viscosidad (“engordar”).

Repaso: viscosidad

En aquel post explicábamos que la viscosidad es la resistencia al flujo o a la deformación que presenta un fluido. Es esa resistencia notada cuando se menea una cuchara dentro de un líquido o cuando se vierte de un recipiente a otro. Por ejemplo, hay una viscosidad creciente entre leche, crema inglesa y crema pastelera.

El objetivo es atrapar el agua

Aquí radica el santo secreto para espesar una salsa: reducir la movilidad del agua. El modo de hacerlo ha originado las numerosas técnicas y ligazones disponibles en una cocina, sea añadiendo macromoléculas que fijen el agua, emulsionando el líquido o evaporando parte del agua.

Las moléculas de agua tienen gran facilidad de flujo y, por tanto, baja viscosidad, pero si se adhieren y ordenan alrededor de otras moléculas largas/ramificadas pierden capacidad de movimiento. Esta capa de solvatación se debe a la formación de puentes de hidrógeno y a las interacciones electrostáticas.

También influye en la viscosidad la fricción que haya entre las propias cadenas de estas grandes moléculas y cuánto tiendan a “enredarse”, es decir, su poder gelificante. Aquí nos asomamos a las transformaciones sol-gel en el fascinante mundo de los coloides.

aguasolvatacion

Las moléculas hidrofílicas fijan a su alrededor una capa de agua a través de puentes de hidrógeno e interacciones iónicas. Ese agua solvatada tiene menor capacidad de fluir y, por tanto, mayor viscosidad. En cambio el agua libre fluye libremente.

De sol a gel y de gel a sol

Una clara de huevo contiene proteínas dispersas en agua, pero al cocinarse las proteínas gelifican en forma de una red sólida que contiene gotas de agua atrapadas. Tal inversión de las fases (proteínas solubles → red proteica, agua fluente → agua dispersa y fijada en la red) es un ejemplo de transformaciones sol-gel.

Un sol es un coloide donde partículas sólidas flotan en una fase líquida, mientras un gel es un coloide donde un sólido contiene gotas de líquido dispersas. Muchos sistemas pueden pasar de sol a gel y viceversa según las condiciones de temperatura y agitación. Así un buen consomé se gelatiniza al guardarlo en nevera y vuelve a licuarse al calentarlo. Manejar el equilibrio sol-gel permite ajustar la textura de una crema/salsa para no terminar con una bechamel arrojadiza o unas natillas de goma.

sol-gel

Un sol está constituido por partículas sólidas flotando en líquido, mientras un gel es una red sólida que contiene agua. Algunas sustancias pueden pasar de sol a gel de acuerdo a las condiciones de temperatura, concentración o pH.

El gradiente de consistencias entre sol y gel depende de la concentración del texturizante y de la temperatura, pero también de las propiedades intrínsecas del compuesto empleado, ya que algunos actúan mejor como espesantes y otros como gelificantes.

Cosas que sirven para espesar

Casi todos los espesantes son moléculas poliméricas, largas y ramificadas capaces de fijar una buena capa de agua en su entorno y de tener fricción entre sí mismas. Por lo común son carbohidratos (almidón, pectinas, gomas) o proteínas (colágeno, albúmina, huevo, sangre). Un caso aparte es la ligazón con grasas (nata, yema, mantequilla).

Los espesantes tipo proteína o carbohidrato suelen someterse a dos fases para obtener su efecto: la primera de extracción/dispersión y la segunda de gelificación.

  • Extracción/dispersión: el colágeno debe extraerse de los tejidos animales durante la cocción y el almidón del arroz o la patata igualmente se extrae hacia el líquido donde hierven. El almidón de harina o maicena y la gelatina de hojas debe primero dispersarse antes de actuar en el medio líquido.
  • Gelificación: el calentamiento produce la formación de redes viscosas de carbohidratos o proteínas desnaturalizadas. Según el grado de gelificación se obtiene un sol más o menos viscoso o un gel más sólido.

Esto es un esquema general, pues hay espesantes que actúan en frío (goma arábiga, goma xantana) y otros cuyo efecto gelificante aparece a medida que baja la temperatura (gelatina, agar).

En el próximo post veremos detalles de cómo funcionan las ligazones mediante polisacáridos, proteínas y grasas, pero veamos un método general para poner a punto una salsa: la reducción.

Evaporación

La reducción es el recurso del cocinero para concentrar un líquido. En ciencia se diría simplemente evaporación (pues reducción es un proceso electroquímico en el que un átomo recibe electrones de otro reactante).

La evaporación progresiva y controlada del agua concentra los solutos y ello se traduce en aumento de sabor, salinidad y viscosidad. La reducción para espesar un líquido funciona si éste contiene sustancias con poder de fijar agua; es decir, si se hierve agua salada nunca se obtendrá un líquido viscoso, solo agua más salada y finalmente solo sal, en cambio si se calienta leche prolongadamente se concentran sus proteínas y gotas de grasa, y se obtiene ese fluido espeso que es la leche evaporada.

La evaporación es una técnica costosa pues consume más tiempo del personal y se obtiene menor volumen del preparado, pero a cambio se concentran sabor y aromas y la textura final no es comparable a la obtenida por espesantes añadidos.

Salsas cortadas

Otro dolor de cabeza cotidiano son las salsas con separación de fases. Son tres las capas que pueden separarse: la grasa, una fase líquida y otra de residuo sólido. El afloramiento de grasa en una salsa se debe en primer lugar a un exceso de fase lipídica, y en segundo término a una insuficiente estabilización de las gotas grasas mediante un agente surfactante.

La separación de líquido y sólidos es común en cremas de verduras y en guisos no del todo óptimos. El sedimento sólido puede deberse a exceso de celulosa insoluble –como cuando se trituran vegetales– o por retrogradación del almidón. El escurrimiento de aguachirri desde una salsa indica que o bien le sobra agua y debe someterse a evaporación, o bien requiere la adición de un agente que atrape el agua.

mermelada_cortada

Esta mermelada deja escapar fluido por alguno de estos motivos: evaporación insuficiente de agua, proporción menor de azúcar, falta de pectina o de acidez para activarla.

El nombre elegante para el escape de agua desde un coloide es sinéresis. Además de ocurrir en cremas/salsas, la sinéresis acontece en algunos geles (como los de agar-agar) y en espumas (como las claras montadas y merengues mal estabilizados). De hecho, esta propiedad permite clarificar caldos mediante gelificación, pues la malla de gel actúa como un microfiltro que retiene partículas y deja gotear el líquido sinerético. Aquí un ejemplo del amigo Enrique de Dorarnosella y otro del gran Orges en La margarita se agita.

Así, amigo cocinero, cuando el jefe de partida te venga a crujir por una crema cortada le puedes responder que no está cortada, sino que ha hecho sinéresis, a ver si te libras del mamporro o te lo da más fuerte.

Lo dicho, en el próximo capítulo seguimos con ejemplos concretos de cómo ligar salsas con ciencia.

Adenda:

Sumo aquí el comentario del profesor Orges con un par de apuntes sobre separación de fases:

  • Otra razón (que no suele darse en la cocina) por la que se puede desestabilizar una emulsión es por un exceso de batido: al hacer gotas de grasa más pequeñas, el volumen de grasa es el mismo, pero la superficie aumenta cada vez más, hasta que no hay emulsionante suficiente.
  • Otros sólidos que pueden aparecer afeando una salsa son agregados de proteínas coaguladas cuando se han sometido a un calentamiento excesivo y prolongado

 

 

“Lo que viene siendo”

“Lo que es”, “lo que sería”, “lo que viene siendo”…

Son éstas muletillas características de la retórica de cocinero. Suelo recurrir quizás más de lo debido a los oficios de cocinero y de guardia civil como ejemplos endémicos de tropiezos y vicios en el correcto uso del idioma: mal empleo del gerundio, construcción exótica de frases, muletillas recurrentes, erratas obsesivas (como especie por especia) empleo erróneo de conceptos (ósmosis, caramelización) o neologismos innecesarios (infusionar, mixar).

Estas agresiones a la retórica y a la gramática son fáciles de oír en los programas de cocina; ello, sumado a la destrucción de la dialéctica en las bocas de los tertulianosperiodistaspolíticostronistas que se hacinan en los medios de comunicación, representa un grueso depósito de heces sobre el trívium clásico de la elocuencia.

La cosa ya suena fea dicha por cualquier persona, pero cuando aparece dentro de una ponencia científica toma una dimensión más preocupante.

Frases vacías de significado

¿La oración “añadimos lo que es el arroz” tiene más sentido que “añadimos el arroz”? “Ahora se monta lo que sería la nata” no aporta nada a “se monta la nata”. La frase ‘lo que es’ resulta una construcción parasitaria carente de contenido, que no añade ninguna información y puede eliminarse sin menoscabo expresivo. Habría que reservar tal construcción para frases del tipo “ya verás lo que es bueno” o “ahora sabrás lo que es sufrir” (frecuentemente escuchadas por residentes de primer año).

Por tanto, cuando estés hablando en público no digas cagajones como “aquí vemos lo que sería la radiografía de tórax” sino “aquí vemos la radiografía”, o “el potencial energético de lo que es la biomasa” sino “el potencial energético de la biomasa”, o “fijaros en lo que viene siendo la sustancia blanca” sino “fijaos en la sustancia blanca”. De lo contrario algún oyente podría ofrecerte un delantal para continuar la charla mejor aderezado. El loqueesismo es un pecado frecuente en el lenguaje oral pero puede encontrarse en textos, sobre todo en prensa: “discutieron sobre todo lo que son políticas de inmigración”.

vienesiendo

Usar un lenguaje bastorro da muy mala impresión. Si su profesión requiere hablar en público cuide su lengua, pues es herramienta de trabajo.

Encontramos un caso para estudio en el programa Chocolateando de Canal Cocina, cuyo pastelero ofrece buenas recetas y destreza técnica junto a un uso paroxístico del “lo que es” y sus derivados. Podéis hacer un juego de tomar chupitos cada vez que el chef dice “lo que es” o, peor aún, cada vez que usa la muletilla “¿vale?”. Yo lo hice una vez y acabé con ictericia. Como ejemplo, un vídeo:

Es el campeón de los “lo que es” y similares. En este programa de 10 minutos conté 20 veces, pero seguro alguno se me ha escapado. Basta ver el segmento entre los minutos 3:00 y 3:15 para catar la especie. ¿Nadie del equipo de producción le habrá hecho el favor de comentarle su vicio?

“Acordaros y fijaros”

Esto ya excede la gastronomía y la benemérita para extenderse a todos los ámbitos de la españolidad, independientemente del nivel académico: la confusión entre el imperativo y el infinitivo.

Recordemos que la forma imperativa de un verbo se usa para ordenar o solicitar una acción: callad, traedme, quédate, siéntense, poneos, etc. Lo de usar el infinitivo en estos casos quizás tenga la intención de suavizar el carácter tan imperativo del imperativo y que no suene tanto a orden sino a petición, así puede parecer más tajante un “sentaos aquí” que un “sentaros aquí”, pero es un uso totalmente erróneo. Lo correcto sería usar expresiones como: “fijaos en la ausencia de onda p”, “acordaos de la irrigación pancreática”, “observad el trazo de fractura”. Los que hablamos castellano de las Américas no caemos tanto en este error, pues en vez de ‘acordaos’ decimos ‘acuérdense’ y ya está.

La inclusión del infinitivo dentro de una oración imperativa es correcta en estos casos:

  • Si el infinitivo está acompañado de otro verbo en imperativo: por ejemplo fijaros sería correcto en “debéis fijaros”, conmutable por “os debéis fijar”.
  • Si se trata de una orden general o impersonal, tipo cartel: “no fumar”, “se ruega guardar silencio”.
  • Si el infinitivo va precedido de la preposición a en una oración exclamativa: “¡venga, a callar!”, “¡a follar, que el mundo se va a acabar!”

Si parte de tu trabajo es hablar en público, sea en conferencias, clases, entrevistas o trato con clientes/pacientes, es más que recomendable considerar el idioma y la oratoria como herramientas de trabajo. Deben ser herramientas cuidadas y hay que ejercitarse en su uso pulido.

bannerpresentaciones

El recurso de las frases vacías, donde se incluye el loqueesismo, las coletillas y la duplicación de géneros, pretende dar una falsa sensación de oratoria elaborada al incluir más palabras, pero en realidad demuestra una endeble construcción del discurso. Y si no os parece, ¡pues irsen!

Sobre el absurdo “lo que es” hay opiniones en Fundéu y en el foro del Instituto Cervantes. Y en relación con la confusión infinitivo-imperativo hay artículos en la RAE y también en Fundéu. Para más ejemplos de la masacre de la elocuencia en el mundo culinario podéis ver el docu-realityEl Xef” de Cuatro; cuesta ver un uso más profuso y gratuito de las palabras polla, puta y hostia.

La paradoja alemana

El mundo germano ha dado muchísimos de los mayores genios que la Humanidad ha visto, tanto en ciencia, filosofía, música o literatura. Baste mencionar a Gauss, Planck y Einstein como epítomes de la grandeza del pensamiento científico; añádase a Leibniz, Humboldt, Heisenberg, von Helmholtz, Koch, Krebs… y si seguimos nombrando no acabaremos nunca.

Sus aportes en ciencia y tecnología han sido cuantiosos y tenemos a los alemanes por gente muy racional, organizada y eficiente. Sin embargo, me escuece en los bajos el paradójico hecho de que también sean las tierras germanófonas el origen de algunas de las teorías pseudocientíficas más disparatadas pero a la vez más difundidas por el mundo: iridología, frenología, sales de Schüssler, mesmerismo, psicoanálisis, biorresonancia, arianismo, limpieza hepática o Nueva Medicina Alemana, por poner ejemplos. Por supuesto que hay numerosas engañifas de origen anglosajón (ya solo con el repertorio de la new age…), indio o del extremo oriente, y que cada país tiene su acervo de curanderos e iluminados.

Quiero incidir en dos de estos megatimos germanos, la homeopatía y la biodinámica, para señalar cómo su estructura y desarrollo, similar a las filosofías religiosas, ha permitido un próspero proselitismo en estas disciplinas a pesar de su carencia de base.

Hahnemann el infinitesimal

Hahnemann

Samuel Hahnemann (1755-1843), padre creador de la paranoia homeopática. Vía general-anaesthesia.com. Un poco Joaquín Luqui, ¿no? ¡Gua, gua, guaaaaa…!

La homeopatía fue creación de un solo hombre, Samuel Hahnemann (1755-1843). En su época aún no se había separado la ciencia de la filosofía, los autores no solían demostrar sus teorías mediante experimentación pues, como buenos filósofos, consideraban el pensamiento superior a la evidencia y literalmente cada maestrillo tenía su librillo, cada profesor tenía opiniones individuales sobre los procesos naturales y sobre cómo tratar las enfermedades. La mayoría de estas teorías médicas nos resultan un disparate actualmente.

En este contexto Hahnemann carburó su propia teoría. Comenzó a trabajar con la quinina, cuya administración a una persona sana producía, según Samuelín, síntomas similares a la malaria (no sé cuántos gin tonics harán falta para pillar una cuartana) y esa era la razón de su actividad antipalúdica. Esta observación, de por sí errónea, fue la iluminación que indujo a la creación de su sistema para «curar lo similar con lo similar», como si en esto sirviera multiplicar negativos para obtener positivos.

Se puso el bueno de Hahnemann a intoxicarse él mismo con múltiples sustancias, al uso romántico de los médicos kamikaze (aquí lo comentamos: 1 y 2). Posteriormente siguió ensayando en sus alumnos hasta tener un corpus de los efectos que estos principios producían. El problema es que sus estudios no seguían el método científico moderno, no había control ni doble ciego, los sesgos eran abundantes y en realidad se buscaba amoldar los resultados a la teoría.

El siguiente paso del tío Sam fue intentar reducir los efectos indeseables del remedio diluyendo el principio activo. Pero se le fue la mano con el invento. Se sacó un sistema de diluciones centesimales (CH) que reducía exponencialmente la concentración en cada paso hasta que ciertamente no quedaba nada del principio activo, pero con unos meneítos mágicos se lograba que el poder sanador no solo permaneciera sino que aumentaba inversamente a la dilución… ¡cucú, cucú, cucú! 😵

webcomichomeopatico

La homeopatía retratada. Vía pseudociencias.com.

En 1810 vio la luz EL LIBRO, el Organon der rationellen Heilkunde («Órganon del arte de curar racionalmente»). La doctrina fue atacada por el stablishment y Hahnemann tuvo que pirarse primero de Leipzig y después de Viena. Sin embargo fue creando apóstoles y conversos. La homeopatía tenía una gran ventaja en su momento: era inocua a diferencia de muchos procedimientos y tratamientos prescritos por la primitiva medicina estándar, que a veces causaban más daño que beneficio. La homeopatía es inocua porque no contiene nada.

Su creador fue inflexible ante las disensiones de sus alumnos y la modificación del dogma. Así que los homeópatas actualmente siguen elucubrando sobre las bases estipuladas en 1810. En ese año Napoleón dominaba media Europa y se casaba con María Luisa de Austria, dominaba España con el servil aplauso de Fernando VII y se establecían las Cortes de Cádiz. En ese año se iniciaba el movimiento de independencia en las colonias americanas españolas. Mire usted si ha pasado tiempo. ¿Desea usted ser tratado mediante un vestigio arqueológico de la medicina occidental?

El problema no es que Hahnemann inventase su teoría, era lo que hacían los profesores de su tiempo. El problema es que 200 años después existan médicos titulados salidos de la Universidad que sigan con fe ciega un paradigma sin fundamento racional y sin demostración de eficacia en estudios controlados.

Rudolf Steiner y la agrobujería

steiner_rudolf

Rudolf Steiner (1861-1825), iluminado polifacético, paridor de la antroposofía y la biodinámica, entre otras historias. Curioso que no le hayan hecho un biopic protagonizado por Jeremy Irons.

La agricultura biodinámica es la iluminada idea de una sola persona, Rudolf Steiner (1861-1925). Este filósofo esotérico austríaco, que tuvo un encuentro personal con Jesucristo, tocó muchos palos: ocultismo, «ciencia espiritual», teosofía y antroposofía, medicina antroposófica y curación eurítmica, artes, arquitectura, banca y sociología. De él provienen las escuelas Waldorf, la Banca Triodos, la multinacional homeopática-antroposófica Weleda y la agricultura biodinámica con su sello de calidad Demeter.

La gente de la Fundación Rudolf Steiner es bastante agresiva con sus críticos, así que si repentinamente veis clausurado este blog o soy pasto de tribunales no sería el primer caso.

Steiner tuvo su epifanía a través de la obra del gran literato Goethe, en quien Rudolf veía elementos divinos que trascendían la simple dramaturgia. Mezcló esto con religiones dhármicas indias y la sapiencia chamánica local, creando una ideología espiritual que podía aplicar a cualquier aspecto del quehacer humano. Por ello acudían a él desde diversos sectores en busca de la sapiencia del rabí.

Eso ocurrió en 1924 cuando algunos agricultores pidieron su opinión sobre la degradación del suelo por los cultivos intensivos y los fertilizantes artificiales (vemos que no son preocupaciones modernas). Steiner, que no habría tenido más contacto con el campo que haber meado detrás de un seto y que su padre fuera guardabosques una temporada, se saco una serie de 8 conferencias donde sentó el dogma de la biodinámica. El contenido se recogió en EL LIBRO «Curso de Agricultura», editado por la Editorial Rudolf Steiner.

Decía que la parcela de cultivo es como un organismo vivo individual, que pueden usarse las fuerzas cósmicas para transmitir la energía del universo a los vegetales a través de un calendario de cultivo astrológico, que se puede capturar el poder de los astros en un cristal de cuarzo y tras meter el cuarzo dentro de un cuerno de vaca y enterrarlo unos meses se debía utilizar el polvo obtenido en dilución cuasi-homeopática para regar la tierra. Que Venus ayuda a eliminar los ratones de campo si se usan cenizas de piel de ratón obtenidas cuando Venus está en el signo de Escorpio. Que una planta es como un ser humano invertido, donde la cabeza es la raíz, del tronco emergen las extremidades en forma de ramas y las flores y frutos son manos y pies. Se me acaba de prolapsar el recto de reírme.

Se vende la biodinámica como una vuelta a las prácticas ancestrales, como un retorno al equilibrio entre el hombre y la naturaleza. Sí, se vende, porque la pegatina Demeter la otorga una empresa privada. Por lo demás estos cultivos antroposóficos respetan las bases de cualquier agricultura ecológica, que quizás es lo único real en toda esta paparrucha. Nada tienen que ver los hechizos y ensalmos de la biodinámica steineriana con la sostenibilidad y la vida sana.

La gilipollez moderna ha permitido que la biodinámica se publicite en gastronomía y enología como lo más cool y que tal majadería sea un reclamo para atraer a una clientela desinformada y con pasta, que cree que por ser biodinámico un producto es más sano y de mejor calidad. Más de una vez he tenido conversaciones así con un maître: «—Le recomiendo este excelente vino biodinámico», «—No, gracias, no me interesa la biodinámica», «—¿No le interesa lo ecológico?», «—Lo ecológico ni me va ni me viene, pero lo que no consumo es brujería», y el maître se larga con cara perpleja.

No digo que los productos obtenidos con este sistema sean de mala calidad o dañinos, pues los astros no aportan nada malo ni bueno a los mismos, pero me niego a pagar por ese «valor añadido». Sería bueno aplicar a los restaurantes y bodegas que venden biodinámica el mismo trato que hacia las farmacias que venden homeopatía: señalarlos como falsarios y vendedores de patrañas.

¿Pseudociencia o pseudorreligión?

¿Por qué triunfan disciplinas como la homeopatía y la biodinámica? ¿Por qué sus adeptos las defienden con ciego denuedo? Veo bastantes similitudes estructurales entres estas pseudociencias y las creencias religiosas, pongamos como ejemplo cualquiera de los grandes cultos monoteístas. Es más, para completar el paralelismo me permito añadir otra pseudociencia de origen alemán que también ha tenido difusión y arraigo: el marxismo. Veamos los puntos de coincidencia:

  • El profeta y su epifanía: existe una figura fundadora a quien se debe el inicio del movimiento, sea Jesús, Mahoma, Marx, Steiner o Hahnemann. El profeta tiene capacidades que lo hacen resaltar. Experimenta una epifanía, una revelación que le hace ver lo que nadie ve y adquirir un conocimiento que sólo el profeta es capaz de absorber. El profeta es venerado por sus seguidores y su memoria merece sacro respeto. La Ciencia, en cambio, es un trabajo aditivo y colaborativo.
  • El dogma: tras la epifanía el profeta estructura las enseñanzas que legará a sus discípulos. Los principios que constituyen el dogma no deben ser alterados posteriormente y el intento de hacerlo suele terminar en disidencia y nacimiento de una nueva rama que se aparta de la fe original. No importa cuán antiguos sean los preceptos y lo que haya cambiado la sociedad, cosa que tratándose de filosofía puede ser tragable pero no cuando se pretende ser una disciplina científica. Los paradigmas en Ciencia cambian, ya no hay validez en los cuatro humores, ni en las miasmas, ni en el loable pus, ni en los pneumas, ni en el flogisto.
  • EL LIBRO: elemento clave por cuanto en él se consigna el dogma y es la fuente principal de sabiduría, sea la Torá, el Corán, los Evangelios, el Órganon o el Manifiesto Comunista. La literatura posterior básicamente se dedica a la exégesis de El Libro.
  • Persecución: el profeta y sus discípulos sufren persecución y exilio. La nueva doctrina representa una amenaza para el poder establecido y por ello maniobra en su contra: Jesús expulsado de Nazaret y finalmente condenado en Jerusalén, Mahoma obligado a migrar de La Meca a Medina, Steiner amenazado por los nazis (quienes al parecer incendiaron su Goetheanum en Suiza), Hahnemann defenestrado de las universidades, Marx expulsado de Alemania, Bélgica y Francia… Los seguidores, activistas, mártires, sufren prisión o violencia, pero al final…
  • Arribo al poder: el proselitismo logra reunir una masa humana crítica para hacerse importante, el culto se extiende por el mundo y al final se establece en forma de grupos de poder, sea político (reinos cristianos, califatos, países comunistas) o económico (multinacional y banca vaticanas, ricas multinacionales de productos homeopáticos, bancos antroposóficos). Lo más grave es que estos grupos de presión meten el hocico en la educación, incluyendo las Universidades.
  • Segregación del adversario: es bonito eso de darle un nombre a los que no son como uno, sea infiel, gentil, pagano, alópata, capitalista, contrarrevolucionario… o marcar a los propios con un sello para diferenciarse de los demás. Son maniobras que ayudan a hacer piña.
  • Ausencia de demostración del beneficio ofrecido: el bien de la vida eterna celestial no ha sido demostrado para el cristianismo ni el islam. La utilidad terapéutica de la homeopatía o de la medicina antroposófica jamás se ha demostrado superior al placebo, por más que gruñan y argumenten los iniciados, ni hay evidencia de que el método biodinámico sea mejor para el suelo o la calidad del producto que cualquier otro sistema de cultivo orgánico/ecológico que no lleve el sello Demeter. En el caso del marxismo la cosa es peor, porque lo que demuestra la historia es su inviabilidad como sistema político-económico, visto el resultado de tiranía y ruina en los países que han estado bajo la ideología de Marx y Lenin.

La orientación pseudorreligiosa de estas pseudociencias las hacen suficientemente fuertes para que actualmente haya un preocupante número de médicos, farmaceutas y facultades entregados a la homeopatía, un número creciente de agricultores y restauradores abrazando la biodinámica como filosofía de trabajo, y que no decrezcan los afectos al comunismo a pesar de décadas de desengaño.

Es lo que tienen los alemanes, que hacen las cosas muy bien hechas y con solidez, tanto en lo bueno como en lo malo.

Ya sabéis que por aquí no colarán comentarios de los acólitos de las supersticiones mencionadas. No guardo ninguna equidistancia en estos temas.