Postgrado en Ilustración Científica de la UPV/EHU

Una muy buena noticia: está abierto para los interesados el primer postgrado de ilustración científica de la Facultad de Ciencias de la Universidad del País Vasco. Es una iniciativa extraordinaria de Vega Asensio, doctora en biología e ilustradora profesional, que se ha currado la carrera de obstáculos que suele acompañar a tales empresas.

Es importante profesionalizar en nuestro medio esta rama artística; por ejemplo, en EEUU la ilustración científica es una carrera con titulación, formación continuada, asociación, congresos y toda la mandanga. Por aquí los colegas médicos somos más de pillar por internet los dibujos que han publicado otros o fusilar libros. No tenemos mucha cultura de contar con ilustradores profesionales y muchos trabajos los hacen dibujantes no especializados que tienen muy buena técnica pero no están familiarizados con las Ciencias.

master_ilustracion_cientifica

Cartel del postgrado de ilustración científica de la Universidad del País Vasco.

¡Solo quince plazas! ¡Nos las quitan de las manos!

El pénsum del curso de postgrado es muy amplio, casi me apetece más ir de alumno que de profe. Abarca diversas técnicas de dibujo manual y digital, ilustración botánica, zoológica, médica, arqueológica, geológica y astronómica. Se tratará la infografía, el modelado 3D, la comunicación científica y la profesionalización de la especialidad.

Son 34,5 créditos más un trabajo final y prácticas de empresa. ¿Qué más se puede pedir?

La información etstá disponible en este vínculo: www.ehu.eus/ilustracion-cientifica. En este podcast del programa radial La mecánica del caracol hay una entrevista a Vega Asensio y a Maren Ortiz (a partir del minuto 15).

La asignatura de ilustración médica

Aunque el resto del profesorado es de primer nivel me han considerado como docente de ilustración para Medicina. En la asignatura participarán los profesores de la UPV Nerea Legarreta y José Antonio Azpilicueta, de la Facultad de Bellas Artes, quienes darán la hermosa parte del dibujo de la figura humana y la anatomía de superficie; también Maren Ortiz, vicedecano de la Facultad de Ciencias y director del postgrado, quien impartirá biología celular e histología.

Yo intentaré hacer que los alumnos se puedan entender con el peculiar discurrir mental de los médicos, el dibujo de órganos, proyecciones quirúrgicas, cómo estampar las fases clave de las cirugías —poco tiene que ver la típica lámina de anatomía con la visión de un campo quirúrgico—. También la ilustración de células y tejidos, de procesos nosológicos y algo de infografía médica.

Pues eso, que ayudéis a divulgar este curso y, si sois de una farmacéutica u otra empresa con capacidad de mecenazgo, es una buena opción para apadrinar.

Equilibrio ácido-base para cocineros

No suelo publicar tan seguido posts sobre ciencia y cocina (ya lo fue el anterior) y, de hecho, el tema de equilibrio ácido-base ni lo tenía contemplado, pero lo considero necesario tras ver un chunguérrimo programa de TV3 donde un cocinero facineroso rebuznaba sin el más mínimo pudor sobre la «dieta alcalina» y osaba replicar, con la única base de su ignorancia fanática, al reconocido profesional de la nutrición Aitor Sánchez (@Midietacojea). El ridículo «debate» fue una ofensa a la dialéctica, a las buenas maneras, a la fisiología y a la gastronomía. El digno Aitor supo soportar con integridad las coces del equino.

El burdégano en cuestión se llama Richard Glezmar y regenta un chiringo en Barcelona llamado Alkaline, nombre cosmopaleto que da indicio de lo que se cocina adentro. Por esas cosas que desprestigian a nuestras universidades, el Ríchal recibió el premio del Centre d’Iniciatives Emprenedores Universitàries (CIEU) de la UAB al más emprendedor. No dudo que el tío sea un innovador, pues hasta quiere inventarse el funcionamiento del cuerpo humano.

Quede claro de antemano que la llamada «dieta alcalina», tal como la plantean los gurús de dominical, es una soberana

B O
B A
D A

y carece de evidencia científica sólida tanto como de base teórica sostenible. Comentemos lo más elemental del metabolismo de ácidos y álcalis, a ver si el Ríchal se entera de algo y deja de dar penita.

¿Qué es el pH?

Primero, ¿qué es un ácido? Por el gusto sabemos claramente qué es un ácido; las moléculas que activan esa sensación gustativa tienen una característica química común, al disolverse en agua dejan ir un átomo de hidrógeno ionizado, tal que así:

AH → A + H+

donde A es el radical del ácido y H+ es el ion de hidrógeno o hidrogenión —en realidad un protón suelto—. Todos los ácidos liberan hidrogeniones y es lo que define su cualidad de ácido. Los hidrogeniones disueltos se asocian a moléculas de agua y forman iones hidronio H3O+.

Segundo, ¿qué es un álcali o base? En este caso no nos ayuda mucho el sentido del gusto, y mejor no intentarlo, porque la mayoría de las bases son altamente corrosivas y tienen escaso uso alimentario. La firma química de los álcalis es el radical oxidrilo, OH y la disociación se produce así:

BOH → B+ + OH

donde B es el radical de la base, comúnmente llamada hidróxido. Aunque estos hidróxidos son moléculas inorgánicas, la parejita OH se encuentra en alcoholes y otros compuestos orgánicos, pero allí se comporta diferente.

Es fácil observar que si se combina un hidrogenión con un oxidrilo se forma agua: H+ + OH → H2O. Por ello los ácidos y los álcalis se neutralizan entre sí.

El pH o potencial de hidrogenión es la escala que mide el grado de acidez de una sustancia o medio. Depende directamente de la concentración de H+ y va de 0 a 14. Se considera neutro un pH de 7; por arriba de 7 es un medio alcalino y por debajo es un ácido. El pH se mide con aparatos llamados potenciómetro o pH-metro («peachímetro»), o bien con tiritas de papel reactivas que dan una medición aproximada.

El agua pura y limpia tiene pH de 7. El zumo de limón, la cocacola y el vinagre oscilan entre 2,5 y 3. El agua jabonosa está por 8 o 9 —de hecho, el sabor de las sustancias alcalinas se describe como «jabonoso»—. Todo lo explicado hasta aquí es a nivel de cole, lo sé, pero quería que al Ríchal le quedara todo clarito.

Ácidos y bases en cocina

Utilizar inteligentemente el pH permite modificar cocciones y reacciones frecuentes en los alimentos.

Los ácidos más comunes en la comida son el acético, el láctico, el cítrico, el málico, el oxálico, el tartárico, el ascórbico y, bueno, hay cientos más, incluyendo los ácidos grasos que son capítulo aparte.

Todos los fermentados generan ácidos orgánicos. Los ácidos coagulan las proteínas, por eso cuecen el ceviche, cortan la leche y estabilizan las claras montadas. Refuerzan las celulosas y retardan el ablandamiento de los vegetales fibrosos y legumbres, aunque favorecen la degradación de los almidones y, por eso, reducen el espesor de las salsas ligadas con ellos. Degradan también la clorofila y ésta pasa de verde a gris. Evitan el pardeamiento polifenólico de frutas y verduras cortadas y también enlentecen la reacción de Maillard. Los ácidos viran a rojo los antocianósidos vegetales (como los del arándano o la lombarda).

La mayoría de lo que comemos tiene pH por debajo de 7, para que te enteres, Richita. Los álcalis son mucho menos prodigados en cocina, casi se limitan al bicarbonato de sodio (NaHCO3) y a la nixtamalización, aunque conviene saber que la clara de huevo también es alcalina. Pero el bicarbonato no tiene radical OH, entonces ¿cómo es alcalino? En realidad el bicarbonato proviene del ácido carbónico, que es un ácido débil. Su propiedad alcalina se debe no a generar oxidrilos sino a secuestrar hidrogeniones: H+ + HCO3 → H2CO3, y este ácido se evapora fácilmente como CO2, según veremos más adelante.

Muchos efectos de las bases son los opuestos a los antes descritos para los ácidos, así, aceleran la reacción de Maillard (por ejemplo, los pretzels se bañan en solución alcalina antes del horneado y así quedan muy oscuros, o el dulce de leche lleva bicarbonato para que adquiera más rápido su color caramelo). Ablandan las celulosas, por lo que la fibra vegetal y las legumbres se cuecen antes. Mantienen el vivo verde de la clorofila. Viran a morado-azul los antocianósidos. Los hidróxidos degradan las proteínas, de modo que un filete se vuelve pastufa si se le baña con sosa.

sofrito_bicarbonato

Alcalinización de un sofrito: en A se muestra el inicio de un sofrito de cebolla. Si se añade una punta de bicarbonato de sodio se observa un inmediato cambio de color a amarillo-verdoso por al aumento del pH y, al cabo de unos minutos, es apreciable el ablandamiento de la fibra (B). La alcalinización acelera la reacción de Maillard y por ello se alcanza antes ese punto oscuro que los cursis llaman «cebolla caramelizada» (C).

¿Qué son tampones o buffers?

Dirá Ríchal que tampón es el cilindro de celulosa empleado para absorber la exudación endometrial —usará otras palabras, claro—. Pero en química se llama solución amortiguadora, tampón o buffer a aquella que tiene capacidad para equilibrar su pH cuando se le añade más ácido o más álcali —como su nombre indica, amortigua el cambio del pH—. Es importante este concepto porque los seres vivos son un saco de varias soluciones tamponadoras, según veremos, y pueden defenderse de los cambios de acidez sin necesidad de dietas esotéricas.

Las soluciones amortiguadoras consisten en la disolución de un ácido débil y su base conjugada, normalmente en forma de una sal. El ejemplo culinario más obvio es el buffer de citrato (Citras®) empleado en recetas de esferificación. Cuando se quiere esferificar un preparado muy ácido es necesario amortiguarlo para que el alginato y el calcio puedan reaccionar. El tampón es una solución en equilibrio de ácido cítrico y citrato de sodio. El ácido cítrico (C6H7O7H) está parcialmente disociado y su reacción de disociación es bidireccional:

C6H7O7H  ↔  C6H7O7 + H+

De modo que si se añade algún ácido al sistema (más H+) la reacción se desplaza a la izquierda para amortiguar el exceso de hidrogeniones. En cambio, si se añade una base (que elimina hidrogeniones) la reacción se desplaza a la derecha. Así el pH se mantiene dentro de unos límites apropiados.

Los tampones del cuerpo humano

Si de lo dicho hasta ahora dudo que el Ríchal tenga idea sólida, sobre la fisiología de amortiguación ácido-base sí que mostró una primitiva ignorancia en su aparición televisiva. Cada compartimiento del organismo tiene un pH óptimo para su funcionamiento. Por ejemplo, el estómago está a un pH de 1-2 gracias al HCl que segrega; cuando ocurre aclorhidria y sube el pH estomacal aparecen trastornos digestivos. El pH de la vagina ronda los 4,5 y su alcalinización favorece el crecimiento de Candida, Trichomonas y demás lindezas. El pH interno de las células es ligerísimamente ácido, mientras el de la sangre es levemente alcalino.

En el mantenimiento de estos diferentes puntos de acidez participan varios sistemas amortiguadores:

  • Tampón bicarbonato: el CO2 producto de la respiración celular se disuelve en el agua corporal en forma de bicarbonato, viaja de tal guisa en la sangre y es eliminado en los capilares alveolares durante la respiración pulmonar. El sistema CO2/H2CO3/HCO3 actúa como el principal buffer fisiológico y el de respuesta más rápida.
  • Tampón fosfato: el ácido fosfórico (H3PO4) se disuelve como iones H2PO4 y HPO4–2. Estos fosfatos de los líquidos corporales forman el segundo tampón en importancia (aunque algunos charcuteros alaben sus productos sin fosfatos). Tiene una gran reserva, pues los fosfatos disueltos están en equilibrio con el fosfato óseo (la hidroxiapatita de los huesos se forma por cristalización de fosfatos de calcio); considerando los 15-17 kg de hueso de un adulto, hay fosfato para aburrir.
  • Las proteínas: todas las proteínas tienen cadenas con múltiples grupos amino (—NH2 / —NH3+) y grupos carboxilo (—COOH / —COO). Según el pH del medio estos grupos pueden captar o ceder iones H+ y, por tanto, amortiguar un exceso o reducción de acidez del sistema.
tampones

Los principales amortiguadores inorgánicos de los líquidos corporales son el bicarbonato y el fosfato. El primero es el principal y el más rápido; depende del metabolismo celular y se controla a través de los pulmones y los riñones. El tampón fosfato es de adaptación más lenta y su reservorio está en el mineral óseo —sensible a hormonas como calcitonina, paratohormona y vitamina D—.

El pH sanguíneo es sagrado

Si hay un valor con un margen estrechísimo de normalidad ese es el del pH de la sangre arterial, que está estrictamente regulado entre 7,35 y 7,45. El pH de la sangre venosa es algo más ácido por la cantidad de CO2 disuelto que contiene.

El control de tan estrecho rango de pH se debe por una parte a los tampones antes comentados y, por otra parte, a dos órganos que viven para ello: los riñones y los pulmones, que no sirven solo para mear o echarle el aliento en la cara al prójimo.

El riñón es una planta de depuración en toda regla que filtra los desechos circulantes y regula los niveles de sales minerales, agua y acidez. Los pulmones son capaces de regular la acidez sanguínea aumentando o reduciendo la frecuencia respiratoria. Si se respira rápido se «lava» CO2 y la sangre se alcaliniza, mientras que la respiración lenta retiene CO2 y ello acidifica la sangre.

Alcalosis y acidosis

Cuando el pH arterial se sale del rango normal sobrevienen problemas importantes que afectan a todo el organismo: acidosis si baja de 7,35 y alcalosis si supera 7,45. A su vez estos trastornos se clasifican según su origen metabólico o respiratorio.

  • Alcalosis respiratoria: el ejemplo clásico es la hiperventilación, donde la respiración acelerada elimina demasiado CO2 sanguíneo. La hiperventilación nerviosa se caracteriza por hormigueos en manos y boca, «nudo en la garganta», mareo, puede haber espasmos musculares y hasta soponcio.
  • Alcalosis metabólica: ocurre si se eliminan en exceso ácidos del cuerpo. Su causa más frecuente es la vomitona; unos cuantos vómitos seguidos expulsan una cantidad significativa de HCl e inducen alcalinización de la sangre. Se acompaña de pérdida de potasio y causa un desfallecimiento general que conoce todo buen borrachuzo tras una farra emética.
  • Acidosis respiratoria: cuando el intercambio gaseoso pulmonar falla, sea por mala ventilación o defectos en el tejido pulmonar, se retiene CO2 en la sangre (hipercapnia) y baja la saturación arterial de O2.
  • Acidosis metabólica: puede aparecer por exceso de producción de ácidos, como en la cetoacidosis diabética o la acidosis láctica, o por mala eliminación renal de los ácidos producidos por el metabolismo.

El organismo es tan sabio que logra compensar una de estas alteraciones induciéndose la opuesta. Por ejemplo, una acidosis metabólica se intenta compensar mediante una alcalosis respiratoria: un paciente en coma diabético presenta una respiración profunda y exagerada (respiración de Kussmaul) que intenta alcalinizar la sangre mediante hiperventilación.

El viejo truco de respirar en una bolsa para aliviar los síntomas de la hiperventilación funciona mediante elevación del CO2 en el aire inspirado y reducción en la eliminación pulmonar del mismo.

bannerpresentaciones

La farsante dieta alcalina

Por fin llegamos a la bobada de turno. Lo primero que llama la atención cuando se miran las listas de alimentos del dogma alcalino es que incluye como «alimentos alcalinos» frutas de bajísimo pH. Eso se debe a que la clasificación no se basa en el pH propio del alimento sino en el nivel de acidez de las cenizas que deja cuando se quema.

Para medir las calorías de un alimento se hace una medición del calor emitido por el mismo mientras se consume en llamas (calorimetría). El residuo de la combustión es, por supuesto, un montón de cenizas. Hay cenizas ácidas y básicas, pero la mayoría de las cenizas son básicas, tanto así que el término álcali proviene del árabe para designar las cenizas con que se preparaba sosa. Pero, mire usted, los alimentos no se consumen hasta cenizas dentro del cuerpo, nadie caga en un cenicero. No puede extrapolarse del todo la combustión en un calorímetro al metabolismo de ese mismo alimento en el ser vivo.

La primera proposición de esta dieta tuvo la intención de reducir la descalcificación ósea que teóricamente podría inducir una dieta excesivamente ácida. No se ha demostrado que el pH de la dieta afecte significativamente la descalcificación ni que la dieta alcalina proteja de ella, no hay evidencia de que una dieta con cenizas alcalinas modifique en nada el pH sanguíneo ni de otro compartimiento corpóreo. Pero a partir de este mito y del de las cenizas se creó el tinglado de la dieta alcalina que, como tantas otras teorías dietéticas estrambóticas, ha anidado fuera de la comunidad científica gracias a gurús de pacotilla, healthy people obsesionada y algún cocinero sin criterio.

Estos gurús han desbarrado sobre su efecto protector contra el cáncer, argumentando que los tumores son ácidos y la dieta alcalina los neutraliza. Absurdo, absurdo. La acidez del entorno tumoral es resultado de un metabolismo anaerobio debido a un crecimiento más rápido que la capacidad de su vascularización. Es tomar el efecto por la causa.

Hay que decir, sin embargo, que dentro de las dietas mitológicas la alcalina no es de las más desequilibradas, pues se basa en un mayor consumo de vegetales y menor de carnes, cosa que propugnan la mayoría de las dietas sensatas. El problema es el dogma absurdo que defiende, la ausencia de comprobación de las bondades que ofrece y el tinglado de productos, libros, webs y «especialistas» que se benefician económicamente de ello.

Crea tu propia dieta alternativa

Voy a inventarme una dieta milagro aquí en directo, ante vuestros ojos. Partiré del hecho de que una dieta saludable abunda en verduras, alimentos integrales, fibra y carbohidratos de absorción lenta. La fibra de estos alimentos no la absorbe el intestino sino que es degradada por la microbiota intestinal y genera gases. Por tanto, mientras más fibra más gases, mientras más vegetales e integrales más gases, mientras más fibra y vegetales más sano y, conclusión lógica de este silogismo, mientras más gases más sana será la dieta.

Ahora le pondré un nombre bonito, quizás Fart-Friendly Diet. Venderé que comer mucha verdura, frutas, tofu y legumbres es sano, quién lo duda, pero su sanidad radica en el volumen de pedos que genera. Si quieres vivir sano tienes que peerte, mientras más mejor. El siguiente paso es exagerar ello fuera de lo sensato: hay que incluir todo lo que pueda aumentar el flujo gaseoso intestinal, sea sano o no, por ello indico que en mi fart-friendly diet es obligado consumir bebidas carbonatadas en grandes cantidades, cerveza, mucha lactosa y leguminosas a diario.

Para redondear el negocio, además de publicar un par de libros al año, de poner un sitio web y una consulta de nutrición (qué más da si no tengo preparación, soy médico y eso da empaque), iniciaré una línea de suplementos nutricionales flatógenos con extractos de quitina de crustáceos y setas, celulosa, cartón picado, césped, a lo mejor fibra textil reciclada…

La fart-friendly diet será sanísima porque sus seguidores así lo creerán ciegamente y condenarán la bazofia con que se alimentan los demás, sabrán que la dieta funciona porque se peerán constantemente, se les caerán los pedos por la calle. No importa que vivan distendidos, con cólicos y diarrea mientras crean que están ganando la vida eterna.

Cuando mi dieta sea famosa y abundante en prosélitos quizás el Ríchal pase de bando y cambie su Alkaline por el restaurante Cuesking House o algo semejante.

«Ceterum censeo Podemus esse delenda»

Las leyes de los gases para cocineros

Eso de que «la cocina es un laboratorio» es una frase demasiado repetida, pero siempre insisto en que los profesionales de la cocina no llegan a ver hasta qué punto es cierto que trabajan dentro de un laboratorio. La química y la física son la auténtica base del oficio de cocinar, pero de cocinar normalito y del día a día, no solo de esa etiqueta mercadotécnica de «cocina molecular» que tanto usaron los chefs de vanguardia en la década de los 2000 y que tanto sesgó la relación ciencia-gastronomía.

Las propiedades físicas de los gases tienen un insospechado papel dentro de las cocinas y de eso hablaremos hoy. Pero ¿es que cocinamos con gases? Sí, se usan líquidos a diferentes temperaturas que mantienen equilibrio con su fase gaseosa, se usan recipientes herméticos, se usan gasificantes, se usan refrigeradores, sifones, máquinas de vacío, nitrógeno líquido, etc.

Son tres las propiedades más importantes de un gas: volumen, presión y temperatura. La relación entre éstas se expresa como las leyes de los gases.

A mayor presión, menor volumen

Primera ley, conocida como ley de Boyle-Mariotte, fue enunciada por Robert Boyle y Edme Mariotte, cada uno por su cuenta, en la segunda mitad de s.XVII. Dice que la presión y el volumen de un gas son inversamente proporcionales, es decir, que si aplica una mayor presión a un gas su volumen disminuye y si baja la presión el volumen aumenta. O dicho en fórmula:

P1V1 = P2V2

Donde el subíndice 1 indica las condiciones iniciales y el subíndice 2 las finales. Esto es fácil de ver si tiene una jeringa con aire y la punta ocluida: si se empuja el émbolo se reduce el volumen de aire dentro de la jeringa y aumenta la presión interna. Las botellas de bebidas gaseosas no muestran burbujas cuando están cerradas, pero al aflojar la tapa y escuchar el fffffshhhhhh se forman de inmediato muchas burbujas finas; ello se debe a la reducción súbita de la presión dentro de la botella que permite la expansión del gas disuelto en el líquido.

leyes_gases1

La ley de Boyle indica que el volumen de un gas se reduce en relación con la presión que se ejerce sobre él, como cuando se usa un pistón (A). Sin embargo, la presión puede elevarse manteniendo el volumen constante (B) o aumentándolo (C) si se introduce más gas en el sistema.

[A Edme Mariotte se le atribuye el descubrimiento de la mancha ciega de la visión, es decir, la proyección en el campo visual de la cabeza del nervio óptico, región del fondo de ojo que carece de fotorreceptores y, por tanto, de visión.]

A mayor temperatura, mayor volumen

Se conoce como ley de Charles y fue publicada a principios del s.XIX. En este caso la relación entre volumen y temperatura es directamente proporcional, de modo que al calentar un gas éste se expande y al enfriarlo se contrae, lo que en fórmula se expresa:

V1/T1 = V2/T2

o bien

V1T2 = V2T1

Si inflamos un globo y lo metemos en el congelador, al cabo de un rato veremos que el globo aparece menos inflado por la contracción del volumen debido a la baja temperatura.

leyes_gases2

La ley de Charles indica la dilatación de un gas en función de la temperatura aplicada. Este fenómeno ocurre en las masas levadas sometidas a cocción.

Ley combinada de los gases

La ley de Boyle considera cambios de presión a una temperatura constante, mientras la ley de Charles alude a cambios de temperatura a una presión constante. Pero en la vida real, y por supuesto en las cocinas, ocurren simultáneamente cambios en la temperatura, la presión y el volumen de los gases. Así, las dos leyes anteriores pueden unirse y expresarse mediante una fórmula combinada:

VPT2 = VPT1

De aquí en adelante los ejemplos culinarios que mostraremos se basarán especialmente en la ley combinada.

Olla express y Gastrovac

Quizás el ejemplo más obvio de la aplicación de las leyes de los gases en cocina sea la olla a presión o express. El agua ebulle a 100 ºC y esa es la máxima temperatura que alcanza el vapor de agua… a la presión atmosférica a nivel del mar. El único modo de hacer que una cocción en agua supere los 100 ºC y, por tanto, cueza más rápido el producto es aumentar la presión dentro del compartimiento. La olla a presión —lo mismo que un autoclave de esterilización— está sellado herméticamente, la presión aumenta al acumularse vapor en su interior y alcanza entre 120 y 130 ºC. La válvula de seguridad evita que la presión exceda un límite peligroso.

Para abrir la olla se debe esperar a que bajen la temperatura y la presión en su interior. Si se va con prisa, colocar la olla bajo el grifo de agua fría acelera la bajada de presión. Los accidentes con la olla express suelen venir por un cierre defectuoso o por abrirla antes de tiempo.

La olla Gastrovac es el opuesto a la express. Es un invento de la Universidad Politécnica de Valencia que ha tenido poco recorrido fuera de la alta gastronomía. Se trata de un recipiente sometido a baja presión en su interior, por lo que se logra la ebullición del agua a temperaturas muy bajas, es decir, es un sistema de cocción a baja temperatura. Simula lo que ocurre cuando se intenta cocinar en las cumbres de los Andes o del Himalaya, donde el agua jamás llegará a 100 ºC y los tiempos de cocción se prolongan sensiblemente. Otro cacharro de alta cocina de funcionamiento similar es el Rotaval, un destilador con bomba de vacío que logra destilar a temperatura inferiores.

Panes y bizcochos

Sin el concurso de las leyes de los gases no disfrutaríamos de esponjosas masas horneadas. Las burbujas de gas atrapadas en la masa, generadas bien por fermentación, bien por gasificantes químicos (impulsor) o bien por batido, se dilatan por efecto de la temperatura de cocción, ejercen presión desde dentro de la masa y la expanden: así crecen los cakes y los panes en el horno. Cuando la cocción solidifica la masa por coagulación/gelatinización de sus componentes se mantiene la estructura alveolada de las burbujas gaseosas.

La pâte à choux o masa de lionesas con la que se hacen los profiteroles es un auténtico milagro donde se junta el manejo de las propiedades viscoelásticas y de los gases para obtener un bollo aéreo perfecto que mil científicos no habrían logrado, ¡viva el empirismo culinario! La masa de profiteroles no lleva impulsor ni fermentación, solamente algo de aire por batido y, sobre todo, mucha agua. La trasformación en vapor de esta agua durante la cocción expande las porciones de masa, la cual tiene una viscosidad y elasticidad suficientes para resistir la presión del vapor en su interior y que se formen unos alveolos grandes. El resultado es un bollito de corteza fina y dorada y casi completamente vacío, perfecto para rellenarlo con la crema pastelera más calórica que la gula nos aconseje.

Otro caso de asombroso equilibrismo es el de los soufflés y su etérea textura, producto del empuje de las burbujas de aire en las claras montadas. Pero en este caso las paredes de las burbujas son muy delicadas y cualquier cambio brusco de temperatura o presión hará colapsar el soufflé. La mezcla se extruye del ramequín conservando su forma cilíndrica, eso sí, si el calor tiene una distribución uniforme dentro del horno; si la temperatura es desigual o si la masa se adhiere a un segmento de un molde mal engrasado, la extrusión es asimétrica y en vez de un cilindro como gorra de gendarme se obtiene una boina de ertxaina.

Los botes de conservas

El procedimiento clásico de embotar conservas consiste en verter la mezcla caliente en los envases calientes, o bien cocerlos dentro de los envases con la tapa no totalmente cerrada y posteriormente cerrarlos herméticamente aún en caliente. Cuando el bote se enfría se contrae la pequeña bolsa de aire que quedaba dentro y se genera un vacío relativo.

Cocina al vacío

Lo de meter comida en sobres plásticos, cerrarlos al vacío y meterlos en baños termostatizados es ya una técnica habitual en cocinas grandes y pequeñas. Las empacadoras de vacío extraen el aire contenido dentro de la bolsa plástica y la sellan para crear un compartimiento estanco con una presión interior por debajo de la atmosférica. En los paquetes envasados al vacío el plástico está pegadito al contorno del alimento como una licra al culamen de la Kardashian. Lo que mantiene ese plástico tan pegado es la presión de la atmósfera exterior, es decir, el peso de esa columna de aire de más de 100 km que tenemos sobre nosotros.

El vacío dentro de bolsa evita que haya compartimientos de aire que la hagan flotar dentro del baño y causen una cocción desigual; además es una herramienta de seguridad microbiológica. Para un buen repaso sobre el tema recomiendo una vieja entrada del blog lamargaritaseagita.com.

bannerpresentaciones

El sifón

Los clásicos sifones de gaseosa se basan en la ley de Boyle-Mariotte: al abrir la espita se produce una descompresión dentro de la botella y el CO2 contenido se expande, empujando el líquido a través del tubo. Los modernos sifones de cocina para espumas trabajan con el mismo principio pero usan ampollas de N2O (óxido nitroso, el famoso «gas hilarante» con efecto anestésico y, además, efecto invernadero). Este gas no es inflamable y el mayor peligro del uso del sifón está en la presión acumulada, por intentar abrirlo indebidamente o cuando se obstruye su salida.

Quien haya cargado un sifón habrá notado que al vaciarse la carga de gas en el sifón tanto éste como la cápsula se enfrían. Eso es debido a una cosita llamada efecto Joule-Thomson, que es, digamos, un derivado de la ley combinada centrado en la relación presión-temperatura. Cuando se somete a presión un gas sus moléculas se compactan, eso aumenta la fricción entre ellas y sube la temperatura. Por el contrario, la reducción de presión reduce la temperatura del sistema. Ello acontece al descomprimir la ampolla de N2O dentro del sifón: hay una busca reducción de presión que enfría el gas.

leyes_gases3

El enfriamiento que se nota en las paredes del sifón cuando se carga con gas se debe a la descompresión del contenido de la cápsula. Es el mismo principio que usan los frigoríficos.

Refrigeradores

Lo explicado anteriormente es la base de los sistemas de enfriamiento de uso cotidiano: neveras, congeladores, abatidores o aire acondicionado. El alma de estos aparatos es el compresor, un motor que comprime y descomprime secuencialmente el gas que circula por los conductos. Existen diversos gases refrigerantes y se siguen investigando otros, pues los que se han usado o bien se meriendan el ozono de la atmósfera o tienen un efecto invernadero del carajo.

Acuérdese usted de James Joule y de William Thomson, alias lord Kelvin, cada vez que saque una cervecita bien fría del frigo.

Nitrógeno líquido

El nitrógeno molecular (N2) ocupa el 78% del aire de la atmósfera inferior, por tanto estamos nadando en nitrógeno y lo respiramos continuamente, no es ningún potingue raro, ni nocivo, ni inflamable, ni «química peligrosa» u otras bobadas que sugieren algunos retrasaditos anti cocina moderna.

El mayor peligro del N2 líquido es que está a −196 ºC y su contacto causa lesiones graves en los tejidos. Cuando me tocaba manipular N2 líquido en el laboratorio me ponía gafas protectoras, guantes aislantes y demás parafernalia. Ahora veo a los cocineros escanciando y manipulando el gélido fluido alegremente, como si fuera ginebra. ¡Hay que tenerle respeto!

El segundo peligro del N2 líquido justifica por sí solo que todo cocinero conozca las leyes de los gases: jamás debe guardarse ni transportarse en un recipiente herméticamente cerrado ni de uso no específico para contenerlo. Los botellones Dewar donde habitualmente se almacena el N2 líquido no tienen tapa de rosca sino un pistón que encaja suavemente en la boca del recipiente y un capuchón que hace de segunda tapa, ninguna hermética, para permitir que se libere controladamente la presión del nitrógeno evaporado.

El peligro surge cuando un inconsciente y/o iletrado quiere «llevarse un poquito de nitrógeno» y no se le ocurre mejor recipiente que un termo vulgar de los de llevar café o un sifón. Y cierra el inadecuado envase a conciencia para que no se le escape el N2. Ese iletrado está transportando una bomba, pues el N2 líquido se transformará en gas y dilatará su volumen hasta cerca de 700 veces. Imagina tú la presión que se acumula dentro del ridículo termo y el terrible estallido en que acaba todo. Estos casos han ocurrido y hay gente que lo ha tenido que lamentar.

Saber estas cositas no solo va bien para cocinar, sino por seguridad, para evitar percances con ollas express, sifones, bombonas de butano, pistolas de pintura de chocolate y demás equipos con altas presiones.

“Ceterum censeo Podemus esse delenda”

Stop diapomierder: ¡el libro definitivo!

Amigos, ya está disponible mi ebook “Cómo preparar presentaciones en Ciencia y Medicina, ¡por fin!

En este manual quiero compartir principios y trucos para salir airoso de las conferencias y dejar buen recuerdo en los oyentes. Trucos obtenidos en casi dos décadas de constante paso por aulas y auditorios, de simposios y congresos, muchas veces como ponente y, más importante aún, como espectador. Principios aprendidos de los tratados de oratoria, de comunicación en público, de los grandes divulgadores científicos, de psicología del aprendizaje y diseño gráfico.

bannerpresentaciones

No sé en qué momento de la formación educativa se supone que debemos aprender a hablar en público y estructurar discursos. Normalmente no es algo que se enseñe, desde luego no en la carrera de Medicina del común de universidades. Aprendemos repitiendo lo que hacen los demás, con los mismos vicios, carencias y estilo. Ya nos parece normal el festival de tostones que nos llueven en los congresos.

Para rematar las carencias de formación retórica vino PowerPoint a joder cualquier atisbo de retórica visual que pudiera salvar el asunto. La rígida diagramación de las diapositivas con plantillas pedorras y abuso extraordinario de las listas de ítems favoreció la proyección inclemente de largos textos, apretadas parrafadas y diseños visuales no menos que feos. Nunca está nada tan malo que no pueda empeorar, así que apareció Prezi…

Pero siempre hay buenos oradores de los que aprender; profesores o compañeros que te aconsejan y te impulsan a mejorar el modo de hacer las charlas. Me gustaría ser, con este libro, quien dé pie a muchos colegas a cambiar el modo de afrontar las presentaciones, a repensarse los vicios consuetudinarios que lastran las diapositivas y el provecho didáctico.

público diapomierder

Así sufre el público cuando tiene que soportar diapomierders una tras otra a lo largo de un simposio. La gente no merece pasarlo mal sino aprender.

El manual contiene gran cantidad de ejemplos de diapositivas buenas y malas, muchísimas ilustraciones y vínculos para recursos web de gran utilidad. Dividí el libro en cuatro partes: I. Cómo estructurar una presentación; II. Elementos de diseño gráfico para presentaciones; III. La puesta en escena; IV. Contenidos adicionales.

Intenté escribirlo es un estilo próximo y desenfadado, e incluir ejemplos que reflejen cosas que a todos nos han pasado en el oficio, incluyendo desbarajustes técnicos con los equipos, el miedo escénico y la omnipresente ley de Murphy que siempre ronda estos eventos. Obviamente no es una biblia del conferenciante, sino un manual para arrancar con buen pie.

Está hecho pensando en el mundillo científico-médico en el que trabajo, asumiendo muchas particularidades que lo distinguen del mundo empresarial, para el que están escritos la mayoría de los textos sobre presentaciones efectivas. Sin embargo, también será útil este manual para profesionales de áreas académicas no científicas.

Cómo preparar presentaciones en Ciencia y Medicina está publicado por la editorial científica Kekulé, de la que formo parte y cuyo nacimiento comenté hace unos meses en este blog. De momento se vende para Apple, pues el formato epub3 interactivo funciona a las mil maravillas en su lector iBooks. En otras plataformas hemos tenido problemas técnicos, pero esperamos próximamente tener el libro disponible para Android y Windows.

Para un poco más de información, consultar este artículo en el blog de Kekulé Editorial.

Siguiendo con la cruzada contra las diapomierders, en un futuro cercano comenzaré a impartir cursos teórico-prácticos sobre presentaciones, abiertos a particulares, centros médicos, instituciones científicas o empresas del sector que estén interesados. Iré notificando al respecto.

Venga, amiguitos, a hacerse con el libro y a sacarle provecho.

stop_diapomierder

Coño, no es vagina

Este título también sería correcto sin la coma. Muchísimas son las cosas del mundo que tienen un nombre oficial científico y uno o más nombres coloquiales. Lo bueno de la apelación académica es su universalidad y concreción, mientras que los nombres vulgares varían de un sitio a otro y de una época a otra, además de padecer una frecuente polisemia.

Las partes del cuerpo son un ejemplo claro de esto. La nomenclatura anatómica es precisa y sin ambages. Lo que comúnmente llamamos brazo en anatomía es miembro superior, pues brazo es únicamente la porción entre el hombro y el codo, y antebrazo del codo a la muñeca. Otro tanto con pierna, que es la parte del miembro inferior de rodilla a tobillo, mientras por arriba está el muslo.

Pero hoy quiero referirme a otras zonas del cuerpo donde el vulgarismo cotidiano se explaya a gusto: zonas erótico-genitales con enorme gama nominativa a pie de calle y diversos niveles, desde tiernos apelativos infantiles hasta la más ofensiva cochinada moral.

A veces surge un problema cuando alguien quiere evitar el nombre vulgar de una de estas zonas y emplea lo que considera su sinónimo culto, pero falla en la precisión del término; este error tan típico en periodistas y tertulianos es especialmente notorio en atributos femeninos: vagina, senos, pezones. En cambio, el badajo masculino se llama oficialmente pene y no hay confusión al respecto.

De los nombres del parrús

Como dije antes, cuando alguien quiere ir de fino para referirse a los genitales femeninos suele hablar de vagina. Así lo vimos extensamente con la noticia de aquella señora a la que supuestamente le echaron pegamento en la “vagina”.

¡Pues mal! Se están refiriendo a vulva y no a vagina. La vagina es un órgano completamente interno, el conducto que va de la vulva al útero; en cambio la vulva es la zona expuesta del aparato genitourinario, formada por labios mayores y menores, clítoris, introito, meato urinario y aderezada por el monte venus. Lo lógico es que el pegamento del caso anterior fuese aplicado en la vulva y no dentro de la vagina, donde, por cierto, quizás no hubiese causado ningún problema pues la humedad del medio no permite que se adhiera el común de los pegamentos.

La palabra vagina llega directamente del latín vagina, que designaba al estuche de la espada u otra funda donde se metiera algo, y de donde proviene vaina o envainar. Resulta obvio el sentido figurado de la vagina femenina como sitio donde meter “el sable”.

Por su parte, vulva es un término latino derivado de volva y éste de la raíz indoeuropea volv/velu, de donde provienen: vuelta, volver, envolver, envoltorio, voluble, velo, revolver y otras con significado subyacente de rodear, ir y venir. En principio se usó vulva como sinónimo de útero, pues envolvía al feto, en contraposición con cunnus, referente a los genitales externos y del que deriva una de las interjecciones más usadas de nuestra lengua.

vulva-vagina

A partir de tiempos de Celso se llamó os vulvae o agujero del útero a la apertura externa genital, y posteriormente permaneció como vulva el conjunto de estructuras que envuelven la entrada a la vagina. Como curiosidad, la vulva de cerda era un manjar de la casquería romana, como se aprecia en los libros segundo y séptimo de la obra de Apicius. Se supone que en este contexto se refiere al útero de la cerda y no a su potorro. Actualmente no es un órgano porcino de uso alimentario, a no ser que Oscar Mayer dé cuenta del mismo dentro de sus productos.

En resumen, lo de llamar vagina a la vulva es una cursilería y una ridiculez de gente que pretende ser fina pero que, coño, se equivoca de término.

Mama y teta

El nombre anatómico y médico de las tetas es mamas o glándulas mamarias. Lo de senos o pechos son apelativos un tanto lechuguinos para ir de finos, pero no ajustados anatómicamente.

Tanto mama como teta parecen provenir de la duplicación de sendas voces infantiles de las raíces indoeuropeas ma y te. Teta tiene equivalentes de similar escritura en muchos idiomas, tanto de origen latino, germánico o eslavo. No sé dónde leí que teta venía de la letra griega theta (Θ) por su forma redondeada con una cosita en el centro, pero eso creo que es un cuento sin fundamento.

Por su parte mama viene del latín mamma, literalmente teta, de origen común con mamá y madre. Otros términos relacionados: mamar, amamantar, mamón, mamandurria, mamífero, mamella, mamelón, mamelonado, mamilar.

Lo de llamar senos a las mamas es de uso general y está aceptado en el Diccionario de la Academia. Sin embargo, en origen seno, del latín sinus, se refería a algo con concavidad, como el pliegue de la toga a nivel pectoral donde el romano podía portar cosas. El concepto de seno lleva a algo curvo con concavidad, algo con capacidad de alojar. En anatomía se refiere a dilataciones cavitarias, como los senos paranasales, los senos venosos intracraneales y otros cuantos.

Si bien la curvatura mamaria podría justificar el término senos en el sentido de sinuoso, lo más probable es que en este caso el seno se refiera al valle pre-esternal que separa las mamas. Por cierto, ese surco intermamario o canalillo es un espacio artefactual que solamente existe en virtud de las prendas de vestir que lo inducen, pues en ausencia de ropa las mamas se separan y marcan el surco submamario, inevitablemente.

mamas-tetas

De pezones y telotismo

Otra confusión frecuentísima en el habla general ocurre entre pezón y areola. No es raro enterarse de que a alguna famosilla un escote traidor “le ha asomado parte del pezón”, pero en realidad lo que asomó fue el borde de la areola, esa piel diferenciada que rodea el pezón.

Pezón es estrictamente la estructura proyectada que contiene la salida de los conductos galactóforos y que sirve para la succión del niño. Tanto la areola como el pezón tienen células musculares que colaboran en la salida de la leche.

La palabra pezón deriva del latín pecciolus, a su vez diminutivo de pes, pie (voces relacionadas: pedículo, pedicelo, pedúnculo). En botánica se usa peciolo para referirse al tallo corto que une las frutas o las hojas a la rama. Esa forma de pequeño tallo o pie se aplicó, por similitud, al punto prominente de las mamas. Por su parte, areola o aréola es diminutivo de área, y visto así suena de lo más inespecífico; más preciso es hablar de areola mamaria.

La voz griega para pezón es θηλή (thelé) y está en el origen del término epitelio, introducido por el holandés Frederik Ruysch (1638-1731) para referirse al aspecto microscópico mamelonado de las capas celulares que recubren numerosos tejidos, como piel y mucosas. La etimología de epitelio es equívoca, pero ha permanecido como un fundamento de la histología. Véase este artículo de Francisco Cortés en el Diccionario Médico de la Universidad de Salamanca.

La raíz pezonil aparece en otros términos médicos, como politelia (presencia de pezones o mamas supernumerarios —más exactamente, polimastia—) y telotismo. Este último se define como la contracción de las células mioepiteliales de la areola y el pezón que inducen la erección del mismo, por efecto del estímulo táctil, erótico o del frío. En la entrada del otoño es frecuente apreciar por la calle telotismo en aquellas muchachas que aún no han adecuado su indumentaria al cambio de estación.

“Ceterum censeo Podemus esse delenda”

 bannerpresentaciones

poleas - retináculos

Jacques Tenon y su famosa cápsula

Tuve el gusto de dar una conferencia en el Curso “Estrabismo del adulto y el niño con baja visión” (21-22 de octubre de 2016), invitado por Ana Wert y Josep Visa, estrabólogos del IMO de Barcelona. Como siempre, me ceden los temas oscuros de los que los ponentes normales huyen; en esta ocasión mi presentación trató sobre el complejo cápsula de Tenon-poleas musculares, componente del sistema de suspensión del globo ocular dentro de la órbita y de gran importancia para la mecánica del movimiento de los ojos.

En términos simples, la cápsula de Tenon es un saco o funda donde va metido el ojo. A su vez este saco tiene fijaciones con los músculos oculares y las paredes orbitarias para mantener el ojo en su sitio y estabilizar las rotaciones del globo.

Tenon se debería pronunciar Tenón

La descripción de esta importante estructura fue hecha en la transición entre los siglos XVIII y XIX por el cirujano y anatomista francés Jacques René Tenon, del que este año se cumplió el bicentenario de su fallecimiento. Nació en Sépeaux (cerca de Auxerre) en 1724 y falleció en París en 1816, a la nada desdeñable edad de 92 años.

Jacques Tenon

Curioso, pero el único retrato disponible de Jacques Tenon parece ser este pequeño esbozo realizado por Jean-Noël Halle cuando el cirujano era un vejete de 90 años, renuente a abandonar su peluca dieciochesca.

Considerando su origen gabacho, lo correcto sería pronunciar su apellido con la tónica en la última sílaba –tenón–, aunque tanto en español como en inglés acostumbramos a cargar el acento en la primera. Ya hemos comentado esta pronunciación peculiar en otros epónimos franceses, como Descemet o Fresnel.

J.R. Tenon provenía de familia con tradición médica y estudió en París a la sombra del franco-danés Jacques Winslow (sí, el del hiato), quien fue el director de su tesis doctoral: De cataracta, theses ex anatomia et chirurgia (1757). A partir de ese año ocupó la cátedra de Patología del Colegio de Cirujanos y también fue miembro de la Académie des Sciences.

En 1803 comunicó sus estudios sobre la fascia bulbar que ahora lleva su nombre y el año de su muerte publicó Mémoires et observations sur l’anatomie, la pathologie et la chirurgie, dedicado en gran parte a las enfermedades oculares.

Otro campo de interés de Tenon fue la estructura y desarrollo de los dientes, aunque su investigación fue principalmente en equinos.

Libro de Tenon

Ilustraciones originales de la obra de Tenon “Mémoires et observations sur l’anatomie, la pathologie et la chirurgie”. Vía kuenzigbooks y gallica.bnf.fr.

El tercer campo donde destacó Tenon fue en salud pública y gestión hospitalaria. Organizó sistemas de vacunación antivariólica, trabajó en la inspección, reconstrucción y reforma del aparato hospitalario (Mémoires sur les hôpitaux de Paris) y fue presidente del Comité de Seguridad Pública en los inicios de la Revolución.

Fue diputado de la Asamblea en 1791, pero al año siguiente prefirió retirarse a las afueras de la capital, lejos de donde afilaban la guillotina. No volvió a París hasta el año antes de su muerte, debido a la invasión del ejército ruso al final de las guerras napoleónicas.

En París está el Hospital Tenon, abierto desde 1878 y bautizado en honor de don Jacques. Allí nació Édith Piaf.

¿Cómo es la cápsula de Tenon?

Como dijimos, la cápsula de Tenon es el forro del globo ocular. Lo cubre por completo excepto en la córnea y en la entrada del nervio óptico. Los seis músculos oculares perforan la cápsula para insertarse en el globo y dentro de este saco el ojo realiza sus movimientos rotatorios. Recuerda a una membrana serosa como la pleura o el pericardio, pero no lo es, pues sólo tiene una capa y no está recubierta de mesotelio. Por delante la cápsula está cubierta por la conjuntiva y por detrás del saco tenoniano está la grasa orbitaria.

capsula de Tenon

Se muestra la cápsula de Tenon en azul, abrigando al globo ocular, y sus expansiones en forma de vainas musculares, poleas y ligamentos orbitarios. Imagen original de Ilustración Médica.

La Tenon (por favor, escribirla con mayúscula inicial) también se llama fascia bulbi o aponeurosis órbito-ocular. Esta última denominación indica las conexiones de la cápsula con otras estructuras oculares, tal como describió su descubridor:

cirugía estrabismo

Vista quirúrgica del espacio tenoniano durante una cirugía de estrabismo. El gancho sujeta la inserción del músculo en la esclera. Se observa la Tenon justo debajo de la conjuntiva y las expansiones que emergan de la vaina muscular.

  • Las vainas de los músculos oculares se fijan en la Tenon y emiten expansiones en el espacio intratenoniano: los pliegues falciformes de Guérin y las membranas intermusculares.
  • También hay expansiones intermusculares entre las vainas por detrás del globo y que forman los septos del cono muscular, aunque no constituyen un compartimiento cerrado.
  • Del complejo Tenon-vainas salen ligamentos que se insertan en las paredes orbitarias. Los retináculos medial y lateral se insertan en el reborde orbitario junto con los tendones cantales y estabilizan horizontalmente el globo. Los ligamentos veticales son más complejos: el superior incluye el complejo oblicuo superior-recto superior-elevador del párpado-ligamento de Whitnall; el inferior involucra a la fascia capsulopalpebral (recto inferior-oblicuo inferior-retractores del párpado) y al ligamento de Lockwood. De la función de estos ligamentos hablaremos en el siguiente apartado.

La cápsula y el espacio de Tenon son sitios de abundante tráfico quirúrgico en Oftalmología. Son numerosos los procedimientos en los que se abre este espacio: en cirugías de glaucoma –“trabe” o implantes valvulares–, en extirpación de pterigion, conjuntivoplastias, reconstrucciones de superficie ocular, cerclajes para desprendimiento de retina, colocación de placas de braquiterapia, fenestración de vaina del nervio óptico, enucleaciones, evisceraciones y, por supuesto, en casi todas las operaciones de estrabismo. Por ello casi todas las subespecialidades oftalmólogicas se cruzan con Tenon en algún momento.

Maltratar la Tenon durante estas intervenciones puede acarrear serios problemas cicatrizales que limiten la motilidad ocular. Por ello el cirujano oftálmico debe conocer su anatomía y tratarla con sumo cariño, sin rasgarla y sin que se hernie grasa orbitaria.

Joseph Demer, el señor de las poleas

oftalmotropo

Oftalmotropo de Knapp expuesto en el interesantísimo Museo de Historia de la Medicina de Berlín.

La cinemática básica de los ojos ya se entendía muy bien a mediados del s.XIX y se diseñaron simuladores mecánicos basados en pesas y poleas, llamados oftalmotropos. Estos modelos explicaban lo grueso de la motilidad ocular, pero no tomaban en cuenta varios elementos: primero, la complejidad inervacional del aparato motor ocular; segundo, el componente viscoelástico de la grasa orbitaria donde los músculos se mueven y baila el globo; tercero, la presencia de poleas musculares que determinan los vectores de tracción muscular.

La importancia funcional de las poleas musculares ha sido establecida por las investigaciones del oftalmólogo Joseph Demer, del Jules Stein Institute de California. Desde mediados de los años 90 Demer ha publicado kilos de papers demostrando mediante radiología, histología y modelos de bioingeniería la presencia y función de las poleas musculares.

Aunque tendemos a creer que Demer descubrió las poleas, en realidad el sustrato anatómico ya era conocido a partir de Tenon, Schwalbe, Budge, Sappey o Müller y esto puede comprobarse consultando textos del ottocento, como el Traité élémentaire d’anatomie de l’homme de Charles Debierre (1890), donde se describe todo el aparato ligamentoso del ojo de modo muy cercano a como se entiende hoy, aunque sin usar el término ‘polea’.

Debierre

Ilustraciones del Tratado elemental de Anatomía de Debierre (1890) donde se representa la aponeurosis órbito-ocular: Tenon + vainas + ligamentos orbitarios. Esta es la base anatómica de las poleas.

Las poleas no son otra cosa que parte de esos ligamentos de la aponeurosis órbito-ocular que van de las vainas musculares a las paredes óseas orbitarias. El mérito de Demer ha sido conceptualizar estos ligamentos como piezas funcionales y darle relevancia en patología y cirugía del estrabismo.

¿Qué son las poleas musculares del ojo?

El mejor modo de entenderlo es recordar la tróclea del oblicuo superior, ese punto donde el músculo cambia de dirección para dirigirse al ojo y que determina el vector desde el que el músculo actúa sobre el mismo. Eso es una polea muscular. En el cuerpo hay otros ejemplos, como la inflexión del músculo digástrico sobre el hioides o las vainas tendinosas de los dedos que permiten su flexión y extensión.

Los cuatro músculos rectos del ojo tienen unas poleas menos evidentes. Son anillos fibrosos anclados a las vainas musculares a la altura del tercio posterior del globo, a cosa de 5mm por detrás de la entrada muscular en la Tenon. Estos anillos fijan un punto de inflexión en la trayectoria de los músculos y actúan como su inserción funcional (la inserción anatómica está en el vértice de la órbita).

Estos anillos están estabilizados por tractos de tejido colágeno, elástico y fibras musculares lisas que se expanden hacia la periferia y adelante hasta alcanzar las paredes orbitarias. Las poleas de los rectos horizontales forman parte de los retináculos medial y lateral, mientras las de los rectos verticales se integran, respectivamente, en el complejo recto superior-elevador-Whitnall y fascia capsulopalpebral-Lockwood.

Por delante de la polea el vientre muscular tiene mayor movilidad y acompaña al globo en sus rotaciones, mientras que por detrás de las poleas los vientres de los rectos están relativamente fijos dentro de la órbita.

Una puntualización repipi de las que me caracterizan: en realidad estas poleas no son poleas sino correderas. Una polea es una rueda que gira en un eje y permite el deslizamiento de una cuerda o correa, mientras que una corredera es un anillo o canal por donde se desliza otra pieza, pero que no tiene movimiento giratorio. Traducimos del inglés pulley, pero quizás deberíamos hablar de correderas musculares del ojo. Ya se usa el término en anatomía, por ejemplo, en la corredera bicipital del húmero, por donde se desliza el tendón de la porción larga del bíceps.

bannerpresentaciones

Relevancia de las poleas/correderas oculares

Una localización anómala de las poleas distorsiona los vectores de tracción muscular, como ocurre en los síndromes alfabéticos (estrabismos en ‘A’ y en ‘V’, donde los ojos se acercan o separan según miran arriba o abajo) o en las craneosinostosis.

Se ha relacionado la laxitud de la polea del recto lateral en algunos casos de miopía magna con el deslizamiento de este músculo por debajo del globo, lo que da al recto lateral actividad depresora sobre el ojo.

En la cirugía del hilo o Fadenoperation se fija un músculo recto por detrás del ecuador del globo, más o menos a la altura de su polea, y ello limita la acción del músculo fijado. Clásicamente se atribuía su efecto a la alteración del arco de contacto del músculo, pero actualmente se considera que consiste más en dificultar el paso del tendón por la polea o distorsionar el vector de tracción a partir de la misma.

En casos de traumatismo orbitario o cirugías oculares, la rotura del aparato Tenon-poleas es frecuente causa de síndromes adherenciales que alteran la posición y movimiento del globo, y que son de los peores dolores de cabeza a la hora de intentar corregirlos.

“Ceterum censeo Podemus esse delenda”

BIBLIO RECOMENDADA

  • Roth, H.Mühlendyck, Ph.De Gottrau. La fonction de la capsule de Tenon revisitée. J Fr Ophtalmol. 2002;25:968. DOI: JFO-11-2002-25-9-0181-5512-101019-ART17.

  • Demer JL1. Mechanics of the orbita. Dev Ophthalmol. 2007;40:132. PMCID: PMC2268111.

  • Demer JL1. Evidence supporting extraocular muscle pulleys: refuting the platygean view of extraocular muscle mechanics. J Pediatr Ophthalmol Strabismus. 2006;43:296. PMCID: PMC1858665.

anatomía del ángulo iridocorneal

Ilustrando “Cirugía microincisional del glaucoma”

En el pasado 92 Congreso de la Sociedad Española de Oftalmología (Málaga, 21-24 de septiembre de 2016) se presentó la monografía “Cirugía microincisional del glaucoma” coordinada por los doctores Cosme Lavín Dapena (Hospital La Paz, Madrid) y Pablo Alcocer Yuste (Hospital Nisa 9 de Octubre, Valencia). Es el volumen 47 de esa serie de libros azules que edita la SEO cada año, bajo el extraño título de “mesa redonda”. Tuve el gusto de ser solicitado por Cosme para ilustrar la monografía.

MIGS y otras incisiones pequeñitas

Este completo libro recoge un numeroso catálogo de procedimientos para tratar el glaucoma que han ido proliferando en los últimos años y que tienen en común practicarse a través de incisiones mínimas en el globo ocular, sea en córnea o en esclera. Con ello se intenta dar opciones de tratamiento a aquellos pacientes en quienes el tratamiento farmacológico es insuficiente o mal tolerado y, por otra parte, reducir los riesgos y complicaciones propios de la trabeculectomía y otras cirugías filtrantes.

El célebre y melenudo glaucomatólogo Ike Ahmed acuñó el acrónimo MIGS (minimally invasive glaucoma surgery) para referirse a técnicas realizadas a través de la cámara anterior (ab interno) y mediante microincisiones. Esta definición es bastante restrictiva y no engloba todas las opciones disponibles actualmente y que sí aparecen en la monografía de Lavín y Alcocer.

Aquí se clasifican las técnicas según su mecanismo de actuación (aumento de filtración trabecular, aumento de flujo uveoescleral o drenaje subconjuntival) y según se realicen por vía ab interno o ab externo.

Muchos procedimientos consisten en clavar un dispositivo en el ángulo iridocorneal: Xen®, Cypass®, iStent®, Hydrus®, ExPress®, InnFocus®, SOLX Gold Shunt. Otros se dedican a raspar o abrir el trabeculum mediante instrumental específico: Trabectome®, Kahook Dual Blade, trabeculostomía con láser excimer. Otros dilatan el propio canal de Schlemm: viscocanaloplastia, expansor de Stegmann. Finalmente hay una miscelánea de otras técnicas: EPNP con láser CO2, SIGS, goniosinequialisis.

Los interesados podéis intentar conseguir el libro a través de la SEO, de algún amigo socio o mediante el camello bibliográfico de confianza.

Mis dibujos

El libro tiene una buena cantidad de material fotográfico y de ilustraciones. De éstas –no todas son mías– realicé 25 láminas sobre anatomía del ángulo y canal de Schlemm, fisiología del humor acuoso, funcionamiento de diversos dispositivos y técnicas quirúrgicas. Dejo unas pocas muestras a continuación y otras que pueden verse en mi porfolio. De más está decir que las figuras tienen todos los derechos reservados, y por partida doble.

anatomía del ángulo iridocorneal

Disección artística del limbo esclerocorneal y del ángulo de la cámara anterior, que muestra la disposición y relaciones del canal de Schlemm.

iStent

Dispositivo iStent, microscópica pieza metálica que se inserta dentro del canal de Schlemm para mejorar el drenaje de humor acuoso.

dispositivos MIGS

Algunos dispositivos empleados en la cirugía microincisional del glaucoma. Obviamente no se ponen todos juntos.

Gold Shunt

Gold Shunt, pieza de oro que se implanta en el espacio supracoroideo a modo de válvula para derivar humor acuoso hacia este espacio de reabsorción.

Con encargos de esta magnitud uno se acaba metiendo tanto que ya me conocía el ángulo iridocorneal como si lo hubiera parido, en todas las proyecciones posibles, y hasta soñar que viajaba por dentro del canal de Schlemm como su fuera una fucking iTrack probe.

bannerpresentaciones

¡Schlemm!

Todas estas nuevas técnicas quirúrgicas requieren un conocimiento detallado del canal de Schlemm y las zonas aledañas del ángulo iridocorneal. Es un espacio muy pequeño pero muy especializado y de compleja estructura, representativo del maravilloso diseño del ojo en cada uno de sus rincones.

En el capítulo de anatomía quirúrgica de la monografía Lavín/Alcocer participamos Carlos Arciniegas, Susana Duch y yo mismo, todos del ICO de Barcelona. Allí se detalla en texto e imagen los puntos anatómicos del ángulo con importancia quirúrgica, que son casi todos, y algunos trucos útiles para su disección.

Friedrich Schlemm (1795-1858) fue un anatomista alemán proveniente del gremio de los barberos-sangradores, cirujano de batalla, de mucho hacer y poco filosofar. En sus tiempos de estudiante pasó sendas veces por comisaría, una por disecar un fiambre sin consentimiento de sus familiares y otra por desenterrar una fallecida quince días después de enterrada –no será el único estudiante de anatomía que salta el muro del camposanto, ¡hasta Cajal lo hizo!, o intercambia una osamenta por una botella de ron con el vigilante del cementerio, pero el fin común es obtener huesos, no apropiarse de un cuerpo entero semiputrefacto–.

A pesar de su humilde origen llegó a profesor de anatomía de la Universidad de Berlín y allí, siguiendo su pragmatismo, se dedicó a preparar y disecar cuerpos. Aún hay piezas disecadas por él expuestas en el Berliner Medizinhistorisches Museum der Charité, un museo que todo médico debería visitar si pasa por la capital alemana.

Friedrich Schlemm

Retrato de un exotrópico Friedrich Schlemm (litografía de la Universidad Humboldt de Berlín). A la derecha está la descripción original del canal publicada en el “Theoretisch-praktisches Handbuch der Chirurgie” de Rust (1830): “A lo largo de esta depresión corre un conducto circular de paredes finas, que descubrí en el año 1827 en el ojo de un hombre que se había ahorcado, ya que estaba lleno de sangre, pero en el que una fina cerda también se podía introducir fácilmente después de que la córnea y la esclerótica se seccionaran de adelante hacia atrás. No hay que confundir este canal con el de Fontana.”

Schelmm tuvo especial interés en el estudio de la vasculatura de cabeza y cara, sobre la que publicó un par de disertaciones en latín. En una de ellas describió los nervios del estroma corneal. Observó en 1827 un conducto circunferencial lleno de sangre en el ángulo de unión de la córnea y el iris en los ojos de un suicida ahorcado; obviamente el ahorcamiento favoreció la acumulación de sangre en este canal, normalmente lleno de humor acuoso, y destacó su presencia durante su estudio anatómico macroscópico. En 1830 comentó su descubrimiento en la enciclopedia quirúrgica de J.N. Rust Theoretisch-praktisches Handbuch der Chirurgie y en 1831 publicó su trabajo “Über einen kreisförmigen dünnhäutigen Kanal in der Verbingdunsstelle der Cornea und Sclerotica in menschlichen Auge”.

Fontana y Leber

Felice Fontana (izquierda), primero en describir el tejido reticular del trabeculum en el ojo bovino. Theodor Leber (derecha, doble de acción de Charles Darwin), además de describir la neuropatía y la amaurosis que llevan su nombre, indicó correctamente la función del canal de Schlemm.

Antes que Schlemm la zona del trabeculum había sido estudiada por el italiano Felice Fontana (1730-1805), polifacético científico interesado por la física, la química, la fisiología y primero en observar el nucléolo celular. Su hermano Giorgio Fontana fue el matemático que introdujo las coordenadas polares.

Ni Fontana ni Schlemm aclararon la función de este anillo vascular del borde corneal; fue el célebre oftalmólogo Theodor Leber (1840-1917) quien apuntó su papel en el drenaje de humor acuoso y, por tanto, su importancia en el control de la presión intraocular.

“Ceterum censeo Podemus esse delenda”